ALAN MORRISSEY & ASSOCIATES CHARTERED SURVEYORS & PROJECT MANAGEMENT

SITE SUITABILITY REPORT FOR ON SITE WASTE WATER TREATMENT AND DISPOSAL SYSTEMS SERVING SINGLE HOUSES (p.e.<10) AS PER EPA CODE OF PRACTICE 2009

SITE ADDRESS 5 SKEOUGHCLORAN CALLAN CO. KILKENNY

AMA CARRIED OUT THE EXAMINATION ON THE 14TH & 15TH OF JANUARY 2019

CLIENT

KILKENNY COUNTY COUNCIL

SITE SUITABILITY REPORT FOR ON SITE WASTE WATER TREATMENT FOR SINGLE HOUSES

TABLE OF CONTENTS

APPENDIX 1: SITE CHARACTERISATION FORM

APPENDIX 2: SOURCED INFORMATION

APPENDIX 3: OSI MAPS

APPENDIX 4 : SITE MAPS AND SECTION THROUGH ON SITE SYSTEM AND POLISHING FILTER

APPENDIX 5: ON SITE PHOTOGRAPHS

APPENDIX 6: PROFESSIONAL INDEMNITY INSURANCE

Alan Morrissey & Associates 3 Garden Row, Kilkenny

Tel:0567751111 / 0877981696 info@amaa.ie

APPENDIX B: SITE CHARACTERISATION FORM

File Reference: 18181/AMA/KKCOCO
Prefix: First Name: KILKENNY COUNTY COUNCIL Surname:
Address: Site Location and Townland:
5 SKEAUGHACLORAN, CALLAN, CO. KILKENNY 5 SKEAUGHACLORAN, CALLAN, CO. KILKENNY
Telephone No: 0567752699 Fax No
E-Mail:
Maximum no. of Residents: 8 No. of Double Bedrooms: 6 No. of Single Bedrooms:
Proposed Water Supply: Mains 🗸 Private Well/Borehole 🗌 Group Well/Borehole 📗
2.0 GENERAL DETAILS (From planning application)
Soil Type, (Specify Type): TLs, grey brown podzolics
Aquifer Category: Regionally Important Rk Locally Important Poor Poor
Vulnerability: Extreme High Moderate ✓ Low High to Low Unknown
Bedrock Type: WADo - massive unbedded lime mudstone
Name of Public/Group Scheme Water Supply within 1 km:
Groundwater Protection Scheme (Y/N): Yes Source Protection Area: SI SO
Groundwater Protection Response: R21
Presence of Significant Sites (Archaeological, Natural & Historical):
Past experience in the area: none
Comments:
(Integrate the information above in order to comment on: the potential suitability of the site, potential targets at risk, and/or any potential site restrictions).
R21 Acceptable subject to normal good practice. Where domestic water supplies are located nearby, particular attention should be given to the depth of subsoil over bedrock such that the minimum depths required (EPA, 2009) are met and that the likelihood of microbial pollution is minimised.
The potential targets at risk are the ground water and surface water

Note: Only information available at the desk shirtly stage should be used in this section.

3.0 ON-SITE ASSESSMENT

3.1 Visual Assessn	nent		
Landscape Position	toe slope		
Slope:	Steep (>1:5)	allow (1:5-1:20)	Relatively Flat (~1:20)
Surrace Features with	thin a minimum of 250m (Distance To	Features Should Be Noted In	Metres)
Houses: existing hou	use on site, dwellings to east and west on imme	ediate sites.	
Existing Land Use:	open space		
Vegetation Indicator	s: grass		
Groundwater Flow D	Direction: west to east		
Ground Condition:	test area firm and dry under foot, middle secti	on soft under foot	
Site Boundaries:	post wire fence to east, west and south. wall to	front north entrance.	
Roads	rural access road to front north		
Outcrops (Bedrock /	And/Or Subsoil). none visible		
Surface Water Pond	ling: none visible	Lakes: none visible	
Beaches/Shellfish: [none visible	Areas/Wetlands: none visible	
Karst Features: non	ne visible		and the state of t
Watercourse/Stream	n*: to rear south of site		
Drainage Ditches*:	none visible		
Springs / Wells*:	none visible		
	pove in order to comment on, the potential suitability is of the proposed system within the site).	y of the site potential targets at risk, the su	itability of the site to treat the
The site would appear to	be suitable to treat waste water,		
The system ideally should	ld be located to the south-side of the existing de	welling.	
The potential targets at ri	isk are the stream to the rear south of the site a	and the ground and surface water in ge	neral.
			III II

^{*}Note and record water level

3.2 Trial Hole (should be a minimum of 2.1m deep (3m for regionally important aquifers))

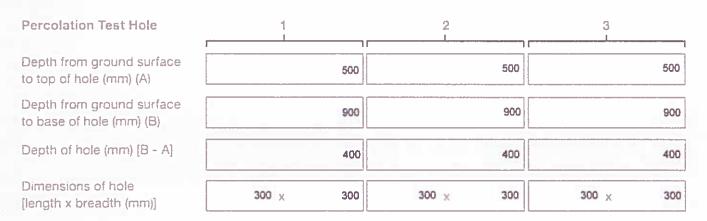
To avoid any accidental damage, a trial hole assessment or percolation tests should not be undertaken in areas, which are at or adjacent to significant sites (e.g. NHAs, SACs, SPAs, and/or Archaeological etc.) without prior advice from National Parks and Wildlife Service or the Heritage Service.

Depth of trial	hole (m): 2.80					
Depth from g to bedrock (n	round surface		oth from grou vater table (n			
Depth of water	er ingress:	Rock typ	ê if present).	nall particles of limeston	e present	
Date and time	e of excavation. 14	3/01/2019 09:3	Date a	and time of examina	ation: 14/01/201	9 10:00
*	Soil/Subsoil Texture & Classification**	Plasticity and dilatancy***	Soil Structure	Density/ Compactness	Colour****	Preferential flowpaths
0.1 m 0.2 m 0.3 m	300mm topsoil SILT					
0.4 m	700mm sit CLAY Ribbons 80-110mm Thread 4no Level of P t	est	Leve	l of T Test		
1.0 m 1.1 m 1.2 m 1.3 m 1.4 m 1.5 m 1.6 m 1.7 m 1.8 m 1.9 m 2.0 m 2.1 m 2.2 m 2.3 m 2.4 m 2.5 m 2.6 m 2.7 m 2.8 m	1800mm gravelly CLAY Ribbons 90-120mm threads 4-5no	Bott	tom of Trial			
2.9 m						

Likely T value: 50.00 Note: *Depth of percolation test holes should be indicated on log above. (Enter P or T at dispis as appropriate)

**See Appendix E for BS 5930 classification.

^{*** 3} samples to be tested for each horizon and results should be entered above for each horizon.

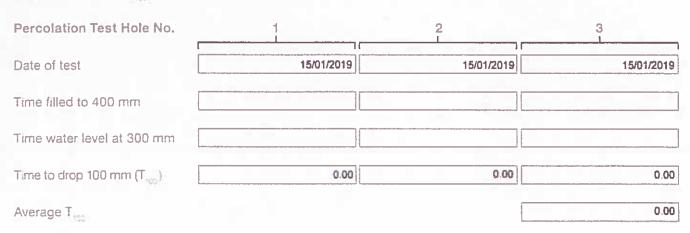

[&]quot;" All signs of mottling should be recorded.

3.2 Trial Hole (contd.) Evaluation:

We propose to carry out T test at 200mm below surface in the B horizon. Also the P test will be carried out at 400mm down. Having carried out the BS5930 soil sampling process it appears that these depths are the most appropriate to treat waste water with sufficient depth of soil beneath the invert of the proposed pipes. It is assumed from the soil sampling and the BS5930 process that the soil is adequate to deal with both the attenuation and hydraulic issues on site. Because the bedrock is close totic surface additional suitable soil will be required to build up the ground to achieve the correct level of suitable soil beneath the invert of the pipes. A total of

3.3(a) Percolation ("T") Test for Deep Subsoils and/or Water Table

Step 1: Test Hole Preparation



Step 2: Pre-Soaking Test Holes

Date and Time			
pre-soaking started	14/01/2019 10:00	14/01/2019 10:00	14/01/2019 10:00

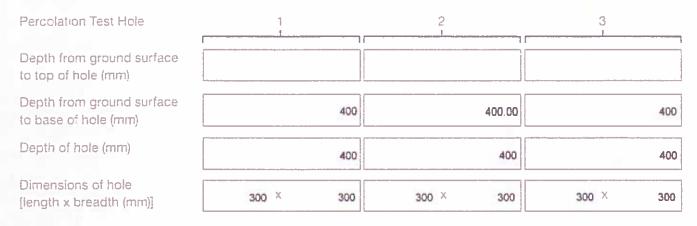
Each hole should be pre-soaked twice before the test is carried out. Each hole should be empty before refilling.

Step 3: Measuring T

If T₁₀₀ > 300 minutes then T-value >90 - site unsuitable for discharge to ground

If T₁₀₀ ≤ 210 minutes then go to Step 4;

If T > 210 minutes then go to Step 5;


Step 4: Standard Method (where $T_{\text{total}} \le 210 \text{ minutes}$)

Percolation Test Hole		1				2					3	
Fill no.	Start Time (at 300 mm)	Fini Tim (at 2 mm)	ne 100	At (min)	Start Time (at 360 mm)	Finish Time (at 200 mm)	Λ	t (min)	Start Time (at 300 mm)	Fin Tim (at 2 mm)	ne 200	At (min)
1				0.00		Will street the street		0.00				0.00
2				0.00				0.00				0.00
3				0.00				0.00				0.00
Average At Value				0.00				0.00				0.00
Result of Te	(Hole No	0.1]		0.00 (t _i)	[Hole No			0.00 (t)	[Hole N	_,_,	<u> </u>	0.00] (t _s
Comments: The 3 test hole Step 5: Mod	st: T =	full of wat		0.00 (m	y 2.)		0.00				0.00
Result of Te Comments: The 3 test hole Step 5: Mod Percolation Test Hole No.	st: T =	full of wat		0.00 (m	y 2.			0.00			3	0.00
Comments: The 3 test hole Step 5: Mod Percolation Test Hole No. Fall of water	st: T = Swere still	full of wat		0.00 (m	y 2.	Z Time K of fall =		T - Value = 4.45 / K,	Time Factor = T,		3 K = 1 / T.	T - Value = 4.45
Comments: The 3 test hole Step 5: Mod Percolation Test Hole No. Fall of water In hole (mm)	st: T = Swere still	hod (will have been been been been been been been be	K,	0.00 (m pection on day 7 - Value = 4.45	y 2. Time Factor	Z Time K of fall (mins) /	rs T	T - Value = 4,45	Time Factor	Time of fall (mins)	K _n = T _s	T – Value = 4.45
Comments: The 3 test hole Step 5: Mod Percolation Test Hole No. Fall of water In hole (mm)	st: T = Similar still strain s	hod (will be a fall limins)	K,	0.00 (m pection on day 7 - Value = 4.45	y 2. Time Factor = T, 8.1 9.7	Z Time K of fall (mins) /	rs T	T - Value = 4,45	Time Factor = T,	Time of fall (mins)	K _n = T _s	T – Value = 4.45
Comments: The 3 test hole Step 5: Mod Percolation Test Hole No. Fall of water In hole (mm) 800 - 250 250 - 200 200 - 150	st: T = swere still diffed Mel	hod (will be a fall limins)	K,	0.00 (m pection on day 7 - Value = 4.45	y 2. Time Factor = T, 8.1 9.7 11.9	Z Time K of fall (mins) /	rs T	T - Value = 4,45	Time Factor = T, 8.1 9.7 11.9	Time of fall (mins)	K _n = T _s	T - Value = 4.45
Comments: The 3 test hole Step 5: Mod	st: T = Similar still strain s	hod (will be a fall limins)	K,	0.00 (m pection on day 7 - Value = 4.45	y 2. Time Factor = T, 8.1 9.7	Z Time K of fall (mins) /	rs T	T - Value = 4,45	Time Factor = T, 8.1 9.7	Time of fall (mins)	K _n = T _s	T - Value = 4.45

Comments:		

3.3(b) Percolation ("P") Test for Shallow Soil / Subsoils and/or Water Table

Step 1: Test Hole Preparation

Step 2: Pre-Soaking Test Holes

Date and Time				
pre-soaking started	14/01/2019 10.00	14/01/2019	10:00	14/01/2019 10:00

Each hole should be pre-soaked twice before the test is carried out. Each hole should be empty before refilling.

Step 3: Measuring P

Percolation Test Hole No.	1	2	3
Date of test	15/01/2019	15/01/2019	15/01/2019
Time filled to 400 mm	09;40	09:41	09:42
Time water level at 300 mm	10:05	10:15	10:22
Time to drop 100 mm (P.,,,)	25.00	34.00	40.00
Average P,00			33.00

If P₁₀₀ > 300 minutes then P-value >90 - site unsuitable for discharge to ground

If P₁₀₀ ≤ 210 minutes then go to Step 4;

If P₁₀₀ > 210 minutes then go to Step 5;

Step 4: Standard Method (where P 210 minutes)

Percolation Test Hole		1			2			3	
Fill no.	Start Time (at 300 mm)	Finish Time (at 200 mm)	Ap (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	1p (min)	Start Time (at 300 mm)	Finish Time (at 200 mm)	Δp (min)
1	10:05	10:30	25.00	10:15	10:49	34.00	10:22	11:03	41.00
2	10:31	10:57	26.00	10:50	11:25	35.00	11:04	11:46	42.00
3	10:57	11:24	27.00	11:26	12:03	37.00	11:47	12:30	43.00
Average Ap Value			26.00			35.33			42.00
-	Average Ap [Hole No.1]		6.50 (p.)	Average \(\alpha\) [Hole No.2		8.83 (p ₂)	Average N [Hole No.3		10.50 (p
Result of Tes	st: P =		8.61 (min	/25 mm)					
Comments:									
P test results an		d Aubaus D	010					arrant and a state of the state	
Step 5: Mod	lified Metho	d (where P,	_{ea} > 210 mir	rutes)					
Percolation									

Percolation Test Hole No.		1				2				3	3	
Fall of water in hole (mm)	Time Factor = T,	Time of fall (mins) = T_	K., = T / T,	P – Value = 4.45 / K _{is}	Time Factor = T ₁	Time of fall (mins) = T_	K, = T, /T,	P - Value = 4.45 / K ₄	Time Factor = T,	Time of fall (mins) = T _c	K., = T, / T _p	P – Value = 4.45
300 - 250	8.1				8.1				8.1			
250 - 200	9.7				9.7				9.7			
200 - 150	11.9				11.9				11.9			
150 - 100	14.1				14.1				14.1			
Average P- Value	P- Value	e Hole 1	= (p,)	0.00	P- Value	Hole 1:	= (p ₂)	0.00	P- Value	e Hole 1	= (p ₃)	0.00

Result of Test: P =	0.00 (min/25 mm)	
Comments:		

3.4 The following associated Maps, Drawings and Photographs should be appended to this site characterisation form.

- Discovery Series 1:50,000 Map indicating overall drainage, groundwater flow direction and housing density in the area.
- 2. Supporting maps for vulnerability, aquifer classification, soil, bedrock.
- 3. North point should always be included.
- 4. (a) Sketch of site showing measurements to Trial Hole location and
 - (b) Percolation Test Hole locations,
 - (c) wells and
 - (d) direction of groundwater flow (if known),
 - (e) proposed house (incl. distances from boundaries)
 - (f) adjacent houses,
 - (g) watercourses,
 - (h) significant sites
 - (i) and other relevant features.
- Cross sectional drawing of the site and the proposed layout¹ should be submitted.
- 6. Photographs of the trial hole, test holes and site (date and time referenced).

The calculated perculation area or polishing filter area should be set out accurately on the site layout drawing in accordance with the code of practice's requirements.

4.0 CONCLUSION of SITE CHARACTERISATION

Integrate the information from the desk study and on-site assessment (i.e. visual assessment, trial hole and percolation tests) above and conclude the type of system(s) that is (are) appropriate. This information is also used to choose the optimum final disposal route of the treated wastewater.

Suitable for			Discharge Route
	(septic tank and percolation area)		Discharge to Ground Water
2. Secondary Treatme	nt System		
a. septic tank an polishing filter:	d filter system constructed on-site and or		
b. packaged was	stewater treatment system and polishing filter	Yes	
5.0 RECOMME	NDATION		
Propose to install:	Packaged wastewater treatment system and polishing	filter	
and discharge to:	Ground Water		
french invert level (m):	1.00		
	ns (e.g. special works, site improvement work	s testing e	tc.
R21 Acceptable subject to	ns (e.g. special works, site improvement work	located near	rby, particular attention
Site Specific Condition	ns (e.g. special works, site improvement work normal good practice. Where domestic water supplies are h of subsoil over bedrock such that the minimum depths	located near	rby, particular attention
Site Specific Condition R21 Acceptable subject to should be given to the dept that the likelihood of microb The potential targets at risk	ns (e.g. special works, site improvement work normal good practice. Where domestic water supplies are h of subsoil over bedrock such that the minimum depths rial pollution is minimised. are the ground water and surface water.	located near	rby, particular attention A, 2009) are met and
Site Specific Condition R21 Acceptable subject to should be given to the dept that the likelihood of microb The potential targets at risk	ns (e.g. special works, site improvement work normal good practice. Where domestic water supplies are h of subsoil over bedrock such that the minimum depths rotal pollution is minimised. are the ground water and surface water. quired for 8 people and using the Tricel Novo Waste Water	located near	rby, particular attention A, 2009) are met and
R21 Acceptable subject to should be given to the dept that the likelihood of microt. The potential targets at risk. The recommended area reveneed 8m2, so allow for 900mm of unsaturated sub-	ns (e.g. special works, site improvement works) normal good practice. Where domestic water supplies are the find of subsoil over bedrock such that the minimum depths risial pollution is minimised. are the ground water and surface water. quired for 8 people and using the Tricel Novo Waste Water 10m2 total. soil and 300mm of imported granular material/washed stoble 8.1 page 28 of the current EPA new Code of Practice	e located near required (EP/	rby, particular attention A, 2009) are met and Plant followed by Tricel Puraflow Modules, total) is required beneath the invert of the
R21 Acceptable subject to should be given to the dept that the likelihood of microt. The potential targets at risk. The recommended area rewe need 8m2, so allow for 900mm of unsaturated subdistribution pipes, as per ta Single Dwelling Houses (p. Approx 1200mm of unsatus.)	ns (e.g. special works, site improvement works) normal good practice. Where domestic water supplies are the find of subsoil over bedrock such that the minimum depths risial pollution is minimised. are the ground water and surface water. quired for 8 people and using the Tricel Novo Waste Water 10m2 total. soil and 300mm of imported granular material/washed stoble 8.1 page 28 of the current EPA new Code of Practice	e located near required (EPA er Treatment one (1200mm for Wastewa	rby, particular attention A, 2009) are met and Plant followed by Tricel Puraflow Modules, total) is required beneath the invert of the ter Treatment and Disposal Systems Servin
R21 Acceptable subject to should be given to the dept that the likelihood of microt. The potential targets at risk. The recommended area rewe need 8m2, so allow for 900mm of unsaturated subdistribution pipes, as per ta Single Dwelling Houses (p. Approx 1200mm of unsaturated degrees, a bed of washed (Lay the Infiltration pipes to stone, Lay 300mm of topso	normal good practice. Where domestic water supplies are h of subsoil over bedrock such that the minimum depths rotal pollution is minimised. are the ground water and surface water. quired for 8 people and using the Tricel Novo Waste Water 10m2 total. soil and 300mm of imported granular material/washed stoble 8.1 page 28 of the current EPA new Code of Practice e.<10).	e focated near required (EPA er Treatment one (1200mm for Wastewal in area of 10r ick.	rby, particular attention A, 2009) are met and Plant followed by Tricel Puraflow Modules, I total) is required beneath the invert of the ter Treatment and Disposal Systems Servin n2. the sides should be banked at 45 we pipes. Lay the geotextile layer above this
R21 Acceptable subject to should be given to the dept that the likelihood of microt. The potential targets at risk. The recommended area rewe need 8m2, so allow for 900mm of unsaturated subdistribution pipes, as per ta Single Dwelling Houses (p. Approx 1200mm of unsaturated subdistribution pipes, as per ta Single Dwelling Houses (p. Approx 1200mm of unsaturated subdistribution pipes, as per ta Single Dwelling Houses (p. Approx 1200mm of unsaturated subdistribution pipes, as per ta Single Dwelling Houses (p. Approx 1200mm of unsaturated subdistribution pipes to stone. Lay 300mm of topsorising main. The modules were sent to the subdistribution pipes to stone.	normal good practice. Where domestic water supplies are the fisher and surface water. are the ground water and surface water. quired for 8 people and using the Tricel Novo Waste Water 10m2 total. soil and 300mm of imported granular material/washed stoble 8.1 page 28 of the current EPA new Code of Practice e.<10). ated suitable topsoil should be imported to site to cover a 8-32mm stone should be laid over the 60m2 at 250mm that the polishing filter on top of this stone. Lay 150mm of san ill above geotextile layer. The Tricel Treatment Plant will grill percolate out to the bed of gravel beneath the modules.	e focated near required (EPA er Treatment one (1200mm for Wastewal in area of 10r ick.	rby, particular attention A, 2009) are met and Plant followed by Tricel Puraflow Modules, I total) is required beneath the invert of the ter Treatment and Disposal Systems Servin n2. the sides should be banked at 45 we pipes. Lay the geotextile layer above this
R21 Acceptable subject to should be given to the dept that the likelihood of microt. The potential targets at risk. The recommended area rewe need 8m2, so allow for 900mm of unsaturated subdistribution pipes, as per ta Single Dwelling Houses (p. Approx 1200mm of unsaturated subdistribution pipes, as per ta Single Dwelling Houses (p. Approx 1200mm of unsaturated subdistribution pipes, as per ta Single Dwelling Houses (p. Approx 1200mm of unsaturated subdistribution pipes, as per ta Single Dwelling Houses (p. Approx 1200mm of unsaturated subdistribution pipes to stone, Lay 300mm of topsorising main. The modules we Only washed gravel of 8 - 3 It should be noted that the depth of suitable soil beneacompacted, please further	normal good practice. Where domestic water supplies are the fisher and surface water. are the ground water and surface water. quired for 8 people and using the Tricel Novo Waste Water 10m2 total. soil and 300mm of imported granular material/washed stoble 8.1 page 28 of the current EPA new Code of Practice e.<10). ated suitable topsoil should be imported to site to cover a 8-32mm stone should be laid over the 60m2 at 250mm that the polishing filter on top of this stone. Lay 150mm of san ill above geotextile layer. The Tricel Treatment Plant will grill percolate out to the bed of gravel beneath the modules.	e focated near required (EPA er Treatment one (1200mm for Wastewal in area of 10mi ick. ne stone above oump waste was above existin oil should be in there the w	rby, particular attention A, 2009) are met and Plant followed by Tricel Puraflow Modules, I total) is required beneath the invert of the ter Treatment and Disposal Systems Servin n2. the sides should be banked at 45 we pipes. Lay the geotextile layer above this vater to the Tricel 3no Modules via a pumpe ting ground level to achieve the appropriate tested once same is laid and lightly tested once same is laid and lightly

note more than one option may be suitable for a site and this should be recorded

² A discharge of sewage offluent to "waters" (definition includes any or any part of any river, stream, take, canal, reservoir, aquifer, pond, watercourse or other inland waters, whether natural or artificial) will require a licence under the Water Pollution Acts 1977-96. Refer to Section 2.6.2.

6.0 TREATMENT SYSTEM DETAILS

Tank Capacity (m³)		Percoiation Area			Mounded Percolation Area		
		No. of Trenches		No. of Trenches			
		Length of Trenches (m)		Length of Trenches (m)			
		Invert Level (m)		Invert Level (m)			
SYSTEM TYPE: Secon	ndary Treatment	: System					
Filter Systems					Package Treatm	neni Systems	
Media Type	Area (m³)*	Depth of Filter	Invert Level		Туре		
Sand/Soil					Tricell	-	
Soil					Capacity PE	8.00	
Constructed Wetland					Sizing of Primary	Compartmen	
Other					7.00	m³	
SYSTEM TYPE: Tertia	ry Treatment Sy	rstem					
Polishing Filter: Surfa	ice Area (m²)*	10.00 Pag	kage Treatmer	nt Sys	tem: Capacity (pe)	8.00	
	ce Area (m²)* [8.00	
or Gravity Fed:	ace Area (m²)* [tem: Capacity (pe)	8.00	
Polishing Filter: Surfa or Gravity Fed: No. of Trenches Length of Trenches (m)	ace Area (m²)* [8.00	
or Gravity Fed: No. of Trenches	ace Area (m²)* [8.00	
or Gravity Fed: No. of Trenches Length of Trenches (m)						8.00	
or Gravity Fed: No. of Trenches Length of Trenches (m) Invert Level (m)			nstructed Wetla			8.00	
or Gravity Fed: No. of Trenches Length of Trenches (m) Invert Level (m) DISCHARGE ROUTE: Groundwater	Hydraulic	Cor	nstructed Wetla			8.00	
or Gravity Fed: No. of Trenches Length of Trenches (m) Invert Level (m) DISCHARGE ROUTE: Groundwater	Hydraulic	Cor Loading Rate * (I/mi	nstructed Wetla			8.00	
or Gravity Fed: No. of Trenches Length of Trenches (m) Invert Level (m) DISCHARGE ROUTE: Groundwater Surface Water **	Hydraulic Discharge	Loading Rate * (I/mi	nstructed Wetla	and: S		Total P	
or Gravity Fed: No. of Trenches Length of Trenches (m) Invert Level (m) DISCHARGE ROUTE: Groundwater Surface Water ** TREATMENT STANDA	Hydraulic Discharge ARDS: formance Stand	Loading Rate * (I/mi	d.d)	and: S	urface Area (m²)*		
or Gravity Fed: No. of Trenches Length of Trenches (m) Invert Level (m) DISCHARGE ROUTE: Groundwater Surface Water ** TREATMENT STAND Treatment System Per	Hydraulic Discharge ARDS: formance Stand	Loading Rate * (I/mi	d.d)	and: S	urface Area (m²)*		
or Gravity Fed: No. of Trenches Length of Trenches (m) Invert Level (m) DISCHARGE ROUTE: Groundwater Surface Water ** TREATMENT STAND Treatment System Per AS PER MANUFACTURER	Hydraulic Discharge ARDS: formance Stand IS INSTRUCTIONS DE:	Loading Rate * (I/mile Rate (mg/l) BOD	d.d)	and: S	urface Area (m²)*		
or Gravity Fed: No. of Trenches Length of Trenches (m) Invert Level (m) DISCHARGE ROUTE: Groundwater Surface Water ** TREATMENT STAND Treatment System Per AS PER MANUFACTURER	Hydraulic Discharge ARDS: formance Stand IS INSTRUCTIONS CE:	Loading Rate * (I/mi	SS	NH,	urface Area (m²)*		

^{*} Hydraulic loading rate is determined by the percolation rate of subsoil

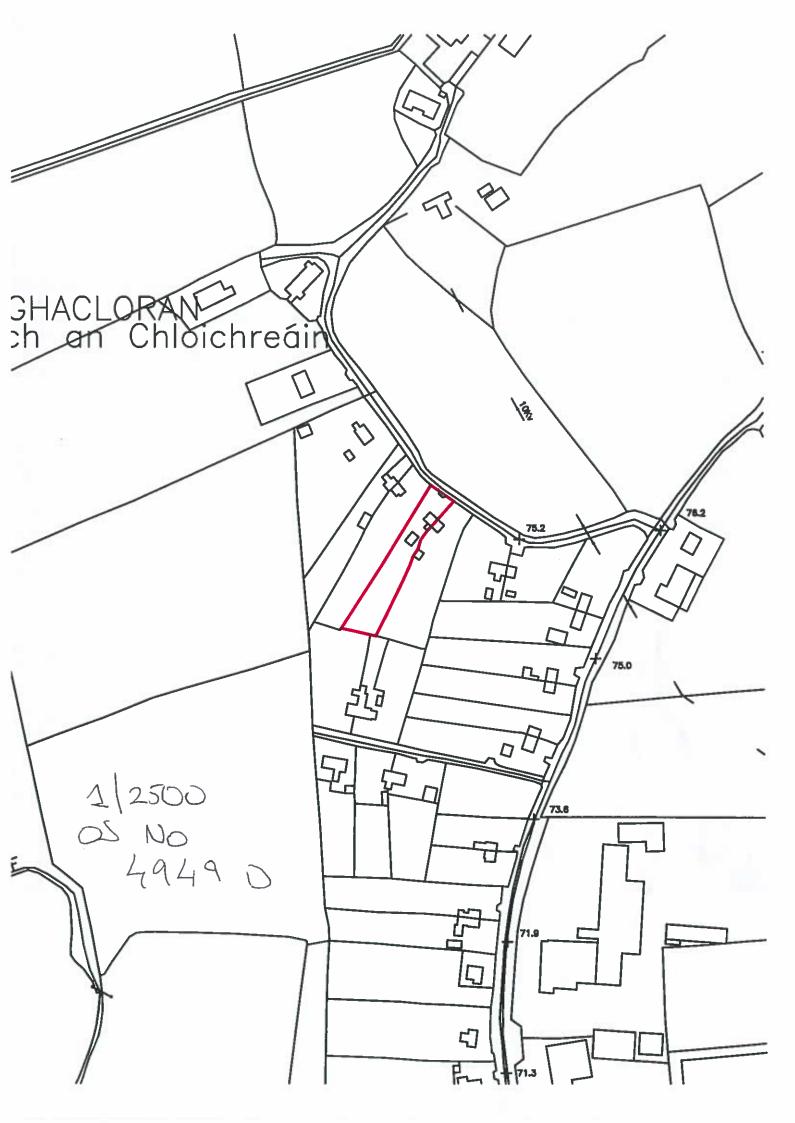
^{**} Water Pollution Act discharge ficence required

7.0 SITE ASSESSOR DETAILS

Company: ALAN MORRISSEY & ASSOCIATES
Prefix: Mr. First Name: ALAN Surname: MORRISSEY
Address: 3 GARDEN ROW, KILKENNY
Qualifications/Experience: FETAC QUALIFIED - CHARTERED SURVEYOR
Date of Report: 17/01/2019
Phone: 0877981696 Fax: e-mail info@amaa.ie
Indemnity Insurance Number: 01ZPI3269845

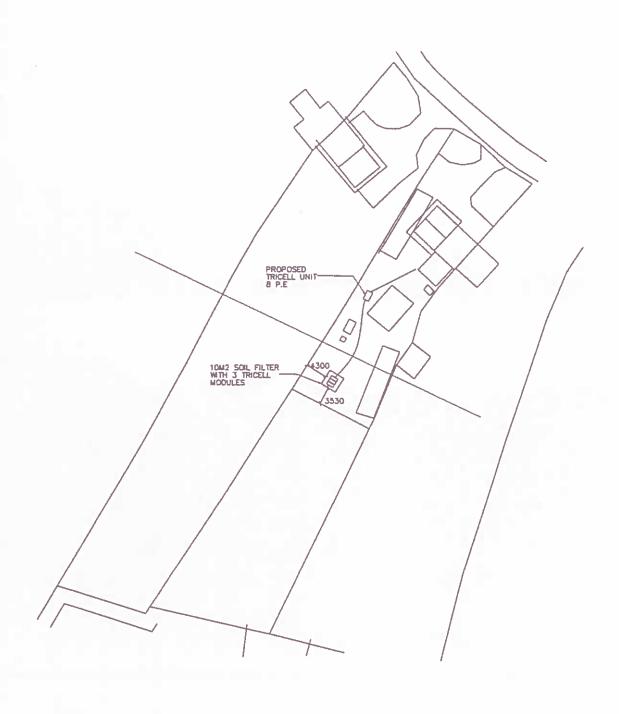
Signature:

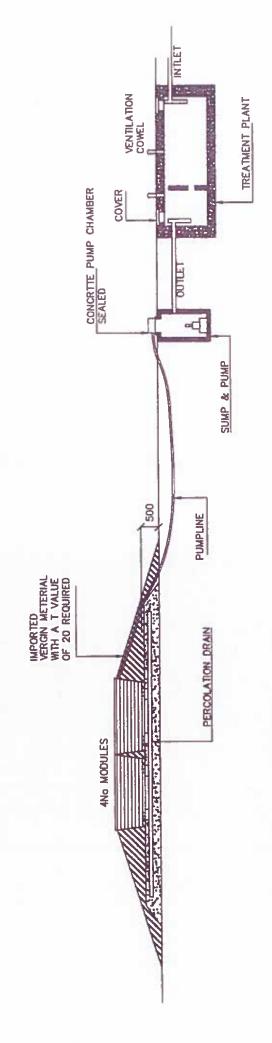
Tel:0567751111 / 0877981696 info@amaa.ie


Alan Morrissey & Associates 3 Garden Row, Kilkenny

Tel: 0567751111 / 0877981696 email: amsurveying@eircom.net

- EPA WEBSITE
- GSI WEBSITE
- OSI MAPS
- KILKENNY COCO WEBSITE


Alan Morrissey & Associates 3 Garden Row, Kilkenny


Tel:0567751111 / 0877981696 info@amaa.ie

Alan Morrissey & Associates 3 Garden Row, Kilkenny

Tel:0567751111 / 0877981696 info@amaa.ie

SECTION THROUGH TRICELL TANK AND TRICELL MODULES SCALE 1:100.

Tricel Site Recommendation Report Tricel Novo Package Plant with Tricel Puraflo Tertiary Treatment

Date 17/01/2019
Report No: SA6_KK_4752

Client Name Kilkenny County Council

Site Location & Townland no. 5, Skeoughacloran, Callan, Kilkenny

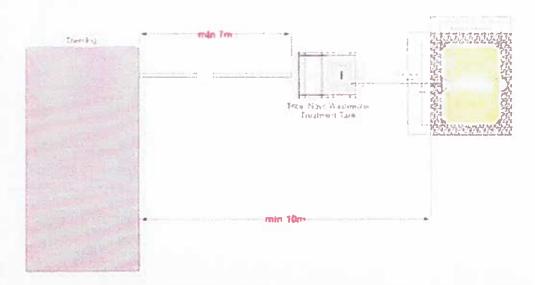
Tel: 0567751111 | Email: alan@amaa.ie

Thank you for choosing Tricel for your wastewater treatment requirements. This report contains the following information for your site and is based on a population of 8 and a P/T value of between 3-20.

Please see outlined below the accompanying documents:

Section 1 - Information on the Tricel Novo and Puraflo modules

- Manufacturers report sizing the Tricel Novo
- Manufacturers report sizing the Puraflo modules
- Drawing of the Tricel Novo
- Drawing of the Tricel Puraflo
- Certification of the selected Tricel Novo Package Plant
- Pump selection and technical data
- · Tricel Novo brochure
- · Tricel Puraflo brochure
- Optional Tricel Novo Maintenance Agreement
- Optional Tricel Puraflo Maintenance Agreement


Section 2 - Information on the infiltration area

- Infiltration area sizing
- Infiltration area separation distances

Based on the information provided to us, using SR66 and the EPA Code of Practice: Wastewater Treatment and Disposal Systems Serving Single Houses (p.e. \leq 10), the appropriate solution for treating wastewater on your site is a Tricel Novo waste water treatment plant followed by Tricel Puraflo modules discharging to a gravel distribution area. The Tricel Novo provides secondary treatment using submerged aeration filter technology. After the Tricel Novo the wastewater is pumped into the Tricel Puraflo modules. The Tricel Puraflo modules are filled with biofibrous peat. The wastewater from the Tricel Novo is distributed over the top of the peat filter using a specially designed pipe network. Through a combination of biological, chemical and physical processes the peat treats the wastewater as it filters through. At the outlet of the Puraflo modules the tertiary treated wastewater is discharged into the in situ subsoil through a gravel distribution area.

Typical Plan layout of a Tricel Novo with Puraflo tertiary treatment.

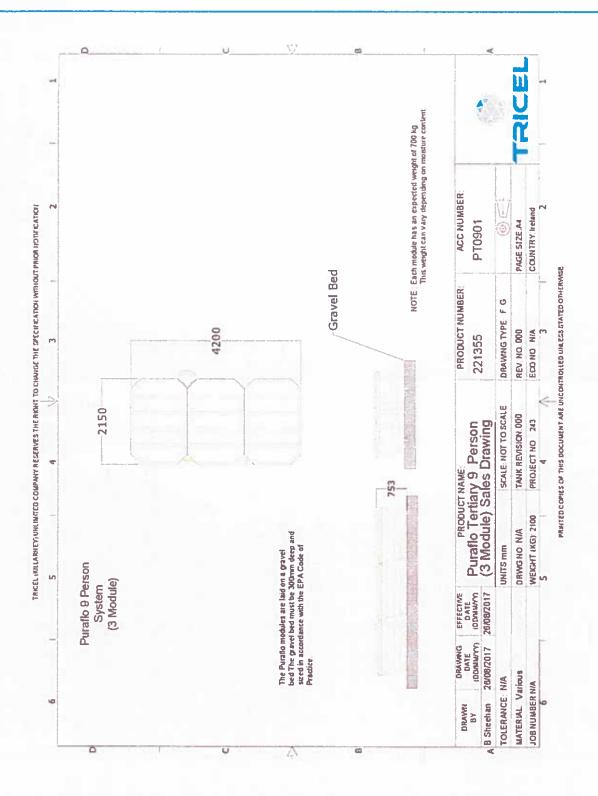
For your site we recommend a Tricel Novo IRL8 wastewater treatment plant which is designed to treat a maximum of 1200 litres of wastewater per day. This recommendation is based on the EPA Code of Practice which states the plant selection should be based on a hydraulic loading of 150l/per person /per day. The Novo IRL8 has a capacity of 4000 litres, of which 1900 are in the primary chamber, this ensures a long desludging interval. The Tricel Novo range of wastewater treatment plants is fully in conformance with EN12566-3 and complies with SR66.

The Tricel Novo pumped plant contains a BEST FOUR pump based on an the Length of Rising Main 30.0 metres and Difference in Height of Rising Main 1.5 metres. The plant outlet is fitted with a 38mm compression fitting for connection to a rising main of 38mm internal bore pipework. Details and pump specifications are contained in section 1.

For tertiary treatment with a PE of 8 a total of 3 Puraflo modules are required to ensure the loading rate of the biofibrous peat per day is not exceeded. The gravel distribution area required underneath the Puraflo modules, as set out in the EPA Code of Practice Clarification February 2012, should be sized based on the following formula: Area = $0.125 \times T1 \times PE$

Note:

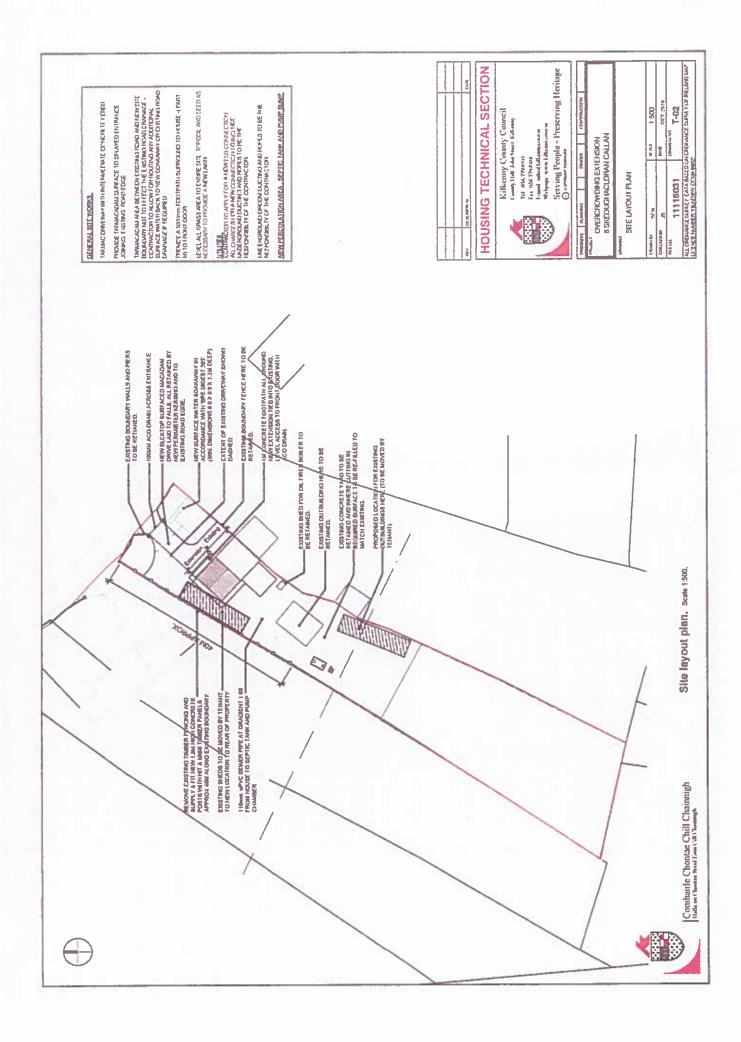

In the above named site, a substitute wastewater treatment system may not be put in place of the Tricel wastewater treatment system.


This recommendation only applies to the above named site based on the information supplied to Tricel. A Site Characterisation Form should accompany this report. Tricel cannot be responsible for misinformation due to misleading information being received by us from clients.

Please see attached the accompanying documents in Section 1 for the Novo Package Plant with Tricel Puraflo and Section 2 for the infiltration area.

Section 1

Certificate in accordance with SR66 for EN12566-Part 3



Novo range und its referring test reports

Population equivalent (PE)	Drawing of model of the range	Waterlightness (EN 17566-3 Annex A)	Freatment Efficiency (EN 12566- 3 Apricy B)	Structural Behaviour (FN 125/66 3 Annex C)	Omability
Install Type Test (IFT)		PASE PIAZCOS-WD- A10909-1055 PIAZO15- WDING 1404 1021 01 PIAZO15 WDING-1406- 1031 01	Pass Plazoro 1000000000	Pass For wet ground conditions also, 1.25 m installation depth from inlet inverti	Pass PIA2015 OH- 1504- 1623 01
6		Pass PIA7009-WD-AT0909-1055 PIA2015-WD/NC-1406-1021-61 PIA2015 WD/NC-1406-1031-01	Pass Range conformity according to S.R 66 2015	Pass For wet ground conditions also 1.25 m installation depth from infet inverti	Pass PIA2015- DH 1504- 1023 01
8		Pass P:A2009-V/D- AT0909-1055 PiA2015 WD/NC-1404- 1021 01 PiA2015 WD/NC-1405- 1031 01	Pass Range conformity according to S.R 66:2015	Pass For wet ground conditions also 1.25 m installation depth from infer event	Pass PIA2015- DH 1504- 1023 01

Alan Morrissey & Associates 3 Garden Row, Kilkenny

Tel:0567751111 / 0877981696 info@amaa.ie

GLENNON

Frank Glennon Limited Insurance Brokers & Consultants Charlemont House, Charlemont Place, Dublin 2 Telephone 707 5800. Fax 707 5900 www.glennons.ie

PROFESSIONAL INDEMNITY INSURANCE CHRTIFICATE

We hereby confirm that the undernoted Firm is insured for the risks of Professional Negligence as per the details shown.

Alan Morrissey Surveying Chartered Surveyors & Project Management 12 Parliament Street Kilkenny

Insurer

: Zurich Insurance PLC

Policy Number

: 01 ZPI 3269845

Limit of Indemnity : €1,000,000 any one claim/incident Unlimited any one Period of Insurance

Policy Excess

: €5,000 each and every claim/incident but €10,000 for

valuation reports

Period of Indemnity: From - 31st October 2018

To - 30th October 2019

Policy Wording

: Surveyors Wording

Retro-Active Date : None

Jurisdiction Limits: Worldwide, excluding U.S.A./Canada territories

DATE

This document is intended to provide brief details of cover only. For full policy terms, conditions and exclusion please refer to Policy Documentation.

