Kilkenny County Council

_ _ _

Proposed residential development at Dunningstown Road, Kilkenny

Engineering Services Report

REVISION HISTORY

Client	Kilkenny County Council
Project	Proposed residential development at Dunningstown Road, Kilkenny
Title	Engineering Services Report

Date	Detail of Issue	Issue No.	Origin	Checked	Approved
02/06/23	Initial issue	PL1	AC	PB	PB

TABLE OF CONTENTS

1.	Introd	luction4
	1.1	Introduction
2.	Roads	and Streets
3.	Waste	ewater 6
	3.1	Collection Network and Outfall6
	3.2	Design of Network
4.	Surfac	ce Water Drainage7
	4.1	Collection Network and Outfall7
	4.2	Design of Network
	4.3	SUDS Strategy and Compliance with GDSDS7
	4.4	Surface Water Drainage System- Operation and Maintenance7
5.	Water	⁻ Supply
	5.1	Water Supply Network9

- Appendix A Irish Water Confirmation of Feasibility
- Appendix B Rainfall Data Design for 100-year rainfall event
- Appendix C Ground Investigation Report

1. INTRODUCTION

1.1 Introduction

This report relates to the roads, drainage and water supply services for the proposed development ('the Development') of a site ['the Site'] at Dunningstown Road, Kilkenny, Co. Kilkenny and is submitted in support of an application for Planning Permission for the Development.

The Development comprises 6 no. units together with associated streets, footways, drainage, services, boundary treatment and landscaping.

Drawing No.	Title	Issue
22038-C-DR-101	Roads and Streets – Layout, Longitudinal Section and Details	PL1
22038-C-DR-102	Roads and Streets – Swept Path Analysis	PL1
22038-C-DR-201	Drainage & Water Supply Layout & Longitudinal Sections	PL1
22038-C-DR-202	Drainage – Construction Details	PL1

The following drawings should be read in conjunction with this report:

2. ROADS AND STREETS

The internal road network and long sections through the road centrelines are shown on drawing no. 22038-C-DR-101.

Traffic Calming

The internal access road is relatively short with a pronounced bend and so encourages low speeds. This lowspeed environment is enhanced by using it as 'homezone' area for shared pedestrian and vehicle activity.

Sightlines and stopping sight distances are provided in accordance with the requirements of the Design Manual for Urban Roads and Streets (DMURS) for a 30kph design speed.

Drainage and Construction

Surface water run-off from roads will be collected by gullies and from the gullies will discharge to the surface water sewer network. All roads are designed to ensure that sufficient crossfalls and gradients are available to drain all areas of the road network.

Pavement and capping layer depths for internal roads will be determined in accordance with the 'Guide to site development works for housing areas' as published by the Department for the Environment.

3. WASTEWATER

3.1 Collection Network and Outfall

Separate systems will be provided within the development for the collection and disposal of surface water runoff and wastewater.

The wastewater sewer network for the Development will discharge to an existing wastewater sewer which is located in the Talbots Gate housing estate.

A pre-connection enquiry was made to Irish Water for this development (Ref No. CDS22008299). A copy of the Confirmation of Feasibility is provided in Appendix A.

Each house will be served by a separate private foul drain with individual inspection chamber to Irish Water details and which subsequently will discharge directly to a foul sewer in a public area.

Wastewater sewers are to be constructed in accordance with the Irish Water Code of Practice.

3.2 Design of Network

The Development will generate 2,430 litres of wastewater per day. These calculations were submitted as part of the pre-connection enquiry.

Wastewater sewers are designed to comply with the Irish Water Code of Practice for Wastewater

4. SURFACE WATER DRAINAGE

4.1 Collection Network and Outfall

Separate systems will be provided within the development for the collection and disposal of surface water runoff and wastewater.

Each unit will be served by a surface water drainage system for disposal of roof-water run-off.

Surface water sewers will be constructed in accordance with the '*Guide to site development works for housing areas'* as published by the Department of the Environment.

4.2 Design of Network

The rainfall data used in the design is site-specific and was obtained from Met Eireann. In accordance with recommendations of GDSDS, a climate change factor of 20% was applied to the design of the surface water sewers. This was achieved by applying a 20% factor to the rainfall data obtained from Met Eireann.

The surface water collection networks were designed in accordance with IS EN 752-4: Part 4 '*Drain and sewer systems outside buildings*' as published by the NSAI, to carry the 2 year rainfall event without surcharge. The design was carried out using the industry-standard software package 'Storm and Sanitary Analysis'.

Self-cleansing flows of greater than 0.75m/s are provided generally. This is not always possible at upstream pipe-runs where contributing areas are low. In these cases, minimum gradients of 1:DN are provided, where DN is the internal diameter of the pipe.

Rainfall data used in the design and calculations for the 100-year design storm are provided in Appendix B.

4.3 SUDS Strategy and Compliance with GDSDS

A ground investigation was carried out to determine the potential of the insitu soils to infiltrate run-off. The investigation found insitu soils to be of good permeability and so it is suited for infiltration of run-off from intense rainfall events. Accordingly, surface water run-off will be collected, stored and discharged as described below. (A copy of the GI report is provided in Appendix C).

The surface water network for the development will discharge to an underground storage are (Stormtech Arch Chambers or similar approved). A porous stone base under these chambers will allow first-flush run-off from rainfall events to infiltrate to ground to the maximum extent that sub-soil permeabilities allow.

In accordance with recommendations of GDSDS, a climate change factor of 20% has been applied to the design of the surface water sewers. This was achieved by applying a 20% factor to the rainfall data obtained from Met Eireann as described in Section 4.1.

Refer to Appendix B for design calculations.

4.4 Surface Water Drainage System- Operation and Maintenance

The surface water drainage system operates entirely under force of gravity.

Drains and gullies in public areas should be inspected on an annual basis, with covers lifted to ensure that manholes remain accessible. Where the inspection reveals evidence of silt or other deposits, these should be sucked out and disposed of appropriately. However, given the nature of the development and the traffic flows that it will generate, it is not anticipated that significant maintenance measures will be required for this infrastructure.

Maintenance of electrical infrastructure will not be required.

A Safety File for the infrastructure in public areas will be prepared in accordance with the Safety, Health and Welfare at Work (Construction) Regulations. In terms of the operation and maintenance of the surface water drainage system, the Safety File should set out:

- Drawings and details of the surface water drainage system together with a description of how the system operates and how damage or failures of the system will manifest themselves;
- The maintenance regime to be applied, based on the designer's assessment of maintenance requirements and manufacturer's recommendations;
- Designer's assessment of risks in maintenance or repair that may not be obvious to a competent caretaker of remedial works contractor.

5. WATER SUPPLY

5.1 Water Supply Network

The water supply for the development will be taken from the existing water supply network located on the Dunningstown Road.

The Development will generate a demand for potable water of 2,430 litres of wastewater per day.

The water supply network was designed to comply with the Irish Water Code of Practice for Water Supply.

Hydrants and sluice valves are located throughout the network in accordance with the requirements of the "*Site development works for housing areas"* as published by the Department of the Environment.

Air valves will be constructed at all high points on site, with scour valves to be constructed at low points.

APPENDIX A

Irish Water Confirmation of Feasibility

CONFIRMATION OF FEASIBILITY

Andrew Cantwell

Kilgallen & Partners 3 Danville Business Park Co.Kilkenny R95VH33

27 February 2023

Our Ref: CDS22008299 Pre-Connection Enquiry Dunningstown Road, Kilkenny, Kilkenny

Dear Applicant/Agent,

We have completed the review of the Pre-Connection Enquiry.

Irish Water has reviewed the pre-connection enquiry in relation to a Water & Wastewater connection for a Housing Development of 6 unit(s) at Dunningstown Road, Kilkenny, Kilkenny, (the **Development)**.

Based upon the details provided we can advise the following regarding connecting to the networks;

•	Water Connection	-	Feasible without infrastructure upgrade by Irish Water
		-	
•	Wastewater Connection	-	Feasible without infrastructure upgrade by Irish Water Connection will be via Talbots Court
			existing third party infrastructure. Permission to connect to this network will be required at application stage.
		-	No stormwater will be permitted to enter the wastewater network.

This letter does not constitute an offer, in whole or in part, to provide a connection to any Irish Water infrastructure. Before the Development can be connected to our network(s) you must submit a connection application and be granted and sign a connection agreement with Irish Water.

As the network capacity changes constantly, this review is only valid at the time of its completion. As soon as planning permission has been granted for the

Stiúrthóirí / Directors: Tony Keohane (Chairman), Niall Gleeson (CEO), Christopher Banks, Fred Barry, Gerard Britchfield, Liz Joyce, Patricia King, Eileen Maher, Cathy Mannion, Michael Walsh

Oifig Chláraithe / Registered Office: Teach Colvill, 24–26 Sráid Thalbóid, Baile Átha Cliath 1, D01 NP86 / Colvill House, 24–26 Talbot Street, Dublin 1 D01 NP86 Is cuideachta ghníomhaíochta ainmnithe atá faoi theorainn scaireanna é Uisce Éireann / Irish Water is a designated activity company, limited by shares. Uimhir Chláraithe in Éirinn / Registered in Ireland No.: 530363

Iri sh Wa ter PO Box 448, South City Delivery Office, Cork City.

www.water.ie

Development, a completed connection application should be submitted. The connection application is available at <u>www.water.ie/connections/get-connected/</u>

Where can you find more information?

- Section A What is important to know?
- Section B Details of Irish Water's Network(s)

This letter is issued to provide information about the current feasibility of the proposed connection(s) to Irish Water's network(s). This is not a connection offer and capacity in Irish Water's network(s) may only be secured by entering into a connection agreement with Irish Water.

For any further information, visit <u>www.water.ie/connections</u>, email <u>newconnections@water.ie</u> or contact 1800 278 278.

Yours sincerely,

Nonne Haceis

Yvonne Harris Head of Customer Operations

Section A - What is important to know?

What is important to know?	Why is this important?
Do you need a contract to connect?	• Yes, a contract is required to connect. This letter does not constitute a contract or an offer in whole or in part to provide a connection to Irish Water's network(s).
	 Before the Development can connect to Irish Water's network(s), you must submit a connection application <u>and</u> <u>be granted and sign</u> a connection agreement with Irish Water.
When should I submit a Connection Application?	 A connection application should only be submitted after planning permission has been granted.
Where can I find information on connection charges?	 Irish Water connection charges can be found at: <u>https://www.water.ie/connections/information/charges/</u>
Who will carry out the connection work?	 All works to Irish Water's network(s), including works in the public space, must be carried out by Irish Water*.
	*Where a Developer has been granted specific permission and has been issued a connection offer for Self-Lay in the Public Road/Area, they may complete the relevant connection works
Fire flow Requirements	• The Confirmation of Feasibility does not extend to fire flow requirements for the Development. Fire flow requirements are a matter for the Developer to determine.
	What to do? - Contact the relevant Local Fire Authority
Plan for disposal of storm water	The Confirmation of Feasibility does not extend to the management or disposal of storm water or ground waters.
	 What to do? - Contact the relevant Local Authority to discuss the management or disposal of proposed storm water or ground water discharges.
Where do I find details of Irish Water's network(s)?	 Requests for maps showing Irish Water's network(s) can be submitted to: <u>datarequests@water.ie</u>

What are the design requirements for the connection(s)?	The design and construction of the Water & Wastewater pipes and related infrastructure to be installed in this Development shall comply with <i>the Irish Water</i> <i>Connections and Developer Services Standard Details</i> <i>and Codes of Practice,</i> available at <u>www.water.ie/connections</u>
Trade Effluent Licensing	 Any person discharging trade effluent** to a sewer, must have a Trade Effluent Licence issued pursuant to section 16 of the Local Government (Water Pollution) Act, 1977 (as amended).
	 More information and an application form for a Trade Effluent License can be found at the following link: <u>https://www.water.ie/business/trade-effluent/about/</u> **trade effluent is defined in the Local Government (Water
	Pollution) Act, 1977 (as amended)

Section B – Details of Irish Water's Network(s)

The map included below outlines the current Irish Water infrastructure adjacent the Development: To access Irish Water Maps email <u>datarequests@water.ie</u>

Reproduced from the Ordnance Survey of Ireland by Permission of the Government. License No. 3-3-34

Note: The information provided on the included maps as to the position of Irish Water's underground network(s) is provided as a general guide only. The information is based on the best available information provided by each Local Authority in Ireland to Irish Water.

Whilst every care has been taken in respect of the information on Irish Water's network(s), Irish Water assumes no responsibility for and gives no guarantees, undertakings or warranties concerning the accuracy, completeness or up to date nature of the information provided, nor does it accept any liability whatsoever arising from or out of any errors or omissions. This information should not be solely relied upon in the event of excavations or any other works being carried out in the vicinity of Irish Water's underground network(s). The onus is on the parties carrying out excavations or any other works to ensure the exact location of Irish Water's underground network(s) is identified prior to excavations or any other works being carried out. Service connection pipes are not generally shown but their presence should be anticipated.

APPENDIX B

Rainfall data

Return	Event Duration													
Period	5	10	15	30	60	120	180	240	360	540	720	1080	1440	2880
1	3.90	5.50	6.50	8.20	10.40	13.20	15.10	16.70	19.20	22.10	24.30	28.00	30.90	37.50
2	4.60	6.40	7.60	9.50	11.90	15.00	17.20	18.90	21.60	24.70	27.10	31.00	34.10	41.00
5	6.90	9.60	11.30	13.90	17.00	20.90	23.60	25.70	29.10	32.80	35.70	40.30	43.90	51.60
30	12.20	16.90	19.90	23.70	28.30	33.70	37.30	40.10	44.50	49.30	53.00	58.70	63.10	71.60
100	17.30	24.10	28.40	33.20	38.70	45.20	49.60	52.90	57.90	63.40	67.60	74.10	79.00	87.60

Total Rainfall (mm) from Met Eireann records

Return	Event Duration													
Period	5	10	15	30	60	120	180	240	360	540	720	1080	1440	2880
1	46.80	33.00	26.00	16.40	10.40	6.60	5.03	4.18	3.20	2.46	2.03	1.56	1.29	0.78
2	55.20	38.40	30.40	19.00	11.90	7.50	5.73	4.73	3.60	2.74	2.26	1.72	1.42	0.85
5	82.80	57.60	45.20	27.80	17.00	10.45	7.87	6.43	4.85	3.64	2.98	2.24	1.83	1.08
30	146.40	101.40	79.60	47.40	28.30	16.85	12.43	10.03	7.42	5.48	4.42	3.26	2.63	1.49
100	207.60	144.60	113.60	66.40	38.70	22.60	16.53	13.23	9.65	7.04	5.63	4.12	3.29	1.83

Equivalent Rainfall Intensity (mm/hr)

Return		Event Duration												
Period	5	10	15	30	60	120	180	240	360	540	720	1080	1440	2880
1	56.16	39.60	31.20	19.68	12.48	7.92	6.04	5.01	3.84	2.95	2.43	1.87	1.55	0.94
2	66.24	46.08	36.48	22.80	14.28	9.00	6.88	5.67	4.32	3.29	2.71	2.07	1.71	1.03
5	99.36	69.12	54.24	33.36	20.40	12.54	9.44	7.71	5.82	4.37	3.57	2.69	2.20	1.29
30	175.68	121.68	95.52	56.88	33.96	20.22	14.92	12.03	8.90	6.57	5.30	3.91	3.16	1.79
100	249.12	173.52	136.32	79.68	46.44	27.12	19.84	15.87	11.58	8.45	6.76	4.94	3.95	2.19

Rainfall Intensity (mm/hr) with 20% Climate Change Factor

Design calculations for 100 year rainfall event

Project Description

File Name 22038 Dunningstown Road.SPF

Project Options

Flow Units	LPS
Elevation Type	Elevation
Hydrology Method	Modified Rational
Time of Concentration (TOC) Method	User-Defined
Link Routing Method	Hydrodynamic
Enable Overflow Ponding at Nodes	YES
Skip Steady State Analysis Time Periods	YES

Rainfall Details

Return Period	100	years
Event Duration	15	minutes

Run-off Coefficients

Roofs, Paved Areas and Grassed Verges	1
Permable Pavement	0.5
Other Grassed Areas	0

Ref.	Area	Run-off Coefficient	Rainfall During Event	Run-off volume (m³)	
	(sq.m)		(mm)		
Sub-01	100	1.0	34.08	3.4	
Sub-02	100	1.0	34.08	3.41	
Sub-03	200	1.0	34.08	6.82	
Sub-04	400	1.0	34.08	13.63	
			TOTAL RUN-OFF	27.3	

Upstream manhole	Downstream manhole	wnstream Length	Invert level		Oradiant	Diamatar	Deals Flaws	Constitu		Peak Flow	Total Time	
			Inlet	Outlet	Gradient	Diameter	I Cak I IOW	Capacity	Peak Flow / Capacity	Velocity	Surcharged	Status
		(m)	(m)	(m)	(%)	(mm)	(lps)	(lps)		(m/sec)	(min)	
S1	S2	19.25	61.01	60.91	0.50	225	6.4	31.7	0.20	0.26	0.00	Calculated
S2	S3	24.10	60.91	60.79	0.50	300	40.6	68.2	0.59	0.85	15.00	SURCHARGED
S3	Infiltration	2.60	60.79	60.78	0.35	300	47.6	56.9	0.84	1.60	198.00	SURCHARGED

Storage Area 1

Invert level of Sub-base Layer	60.28	m				
Invert level of Storage Chamber	60.78	m				
Max. Water Level during Critical Storm	61.22	m				
Storage Provided at Max. Water level	49.3	m3				

Image: Constraint of the second sec	Dopth above II	П	Storage Volume	
(m) (m OD) (m ³) 0 60.280 0.0 0.025 60.305 1.2 0.051 60.331 2.5 0.076 60.356 3.8 0.102 60.382 5.1 0.112 60.407 6.3 0.112 60.432 7.5 0.178 60.458 8.8 0.203 60.483 10.1 0.229 60.509 11.4 0.224 60.534 12.6 0.33 60.610 16.4 0.336 60.611 18.9 0.432 60.712 21.4 0.433 60.678 22.7 0.443 60.763 24.0 0.539 60.339 28.5 0.633 60.813 26.9 0.559 60.339 28.5 0.666 60.940 34.5 0.686 60.940 34.5 0.686 60.940 34.5 0.686	Deptil above IL	IL IL	(cumulative)	Storage Type
0 60.260 0.0 0.025 60.305 1.2 0.051 60.331 2.5 0.076 60.356 3.8 0.102 60.382 5.1 0.178 60.442 7.5 0.178 60.458 8.8 0.203 60.453 10.1 0.229 60.559 13.8 0.305 60.655 15.1 0.33 60.610 16.4 0.356 60.666 17.7 0.381 60.661 18.9 0.406 60.686 20.1 0.432 60.712 21.4 0.457 60.737 22.7 0.483 60.763 24.0 0.538 60.886 25.4 0.538 60.886 25.4 0.559 60.339 28.5 0.564 60.996 36.0 0.737 61.017 38.9 0.737 61.042 40.3 0.787	(m)	(m OD)	(m ³)	
0.025 60.305 1.2 0.076 60.331 2.5 0.076 60.386 3.8 0.102 60.382 5.1 0.152 60.432 7.5 0.152 60.432 7.5 0.178 60.483 10.1 0.229 60.599 11.4 0.224 60.559 13.8 0.305 60.685 15.1 0.333 60.610 16.4 0.356 60.686 17.7 0.366 60.686 20.1 0.432 60.737 22.7 0.443 60.663 24.0 0.559 60.839 28.5 0.559 60.839 28.5 0.641 60.990 31.6 0.635 60.916 33.1 0.668 60.990 31.6 0.635 60.916 33.1 0.636 60.996 36.0 0.737 61.017 38.9 0.737	0	60.280	0.0	
0.051 60.331 2.5 Sub-base Layer 0.102 60.382 5.1 0.127 60.407 6.3 0.152 60.432 7.5 0.178 60.468 8.8 0.203 60.463 10.1 0.229 60.559 13.8 0.305 60.685 15.1 0.331 60.610 16.4 0.336 60.661 18.9 0.466 60.686 20.1 0.432 60.712 21.4 0.433 60.763 24.0 0.433 60.763 24.0 0.433 60.763 24.0 0.508 60.788 25.4 0.533 60.813 26.9 0.559 60.339 28.5 0.564 60.966 36.0 0.666 60.940 34.5 0.666 60.940 34.5 0.666 60.940 34.5 0.762 61.042 40.3	0.025	60.305	1.2	_
0.076 60.356 3.8 0.102 60.382 5.1 0.127 60.407 6.3 0.152 60.432 7.5 0.178 60.458 8.8 0.203 60.483 10.1 0.229 60.534 12.6 0.279 60.559 13.8 0.305 60.686 15.1 0.33 60.610 18.4 0.336 60.636 17.7 0.341 60.661 18.9 0.406 60.686 20.1 0.432 60.712 21.4 0.433 60.613 24.0 0.508 60.813 26.9 0.559 60.839 28.5 0.554 60.864 30.0 0.61 60.990 31.6 0.625 60.117 38.9 0.737 61.017 38.9 0.737 61.042 40.3 0.762 61.042 40.3 0.762<	0.051	60.331	2.5	Sub-base Laver
0.102 60.382 5.1 0.127 60.407 6.3 0.152 60.432 7.5 0.178 60.458 8.8 0.203 60.483 10.1 0.229 60.509 11.4 0.254 60.559 13.8 0.305 60.856 15.1 0.336 60.610 16.4 0.336 60.636 17.7 0.381 60.661 18.9 0.406 60.686 20.1 0.432 60.712 21.4 0.457 60.737 22.7 0.483 60.663 26.4 0.539 60.839 28.5 0.559 60.839 28.5 0.559 60.940 33.4 0.666 60.966 38.0 0.762 61.042 40.3 0.787 61.067 41.7 0.838 61.118 44.3 0.84 61.144 45.6 0.84	0.076	60.356	3.8	
0.127 60.407 6.3 0.152 60.432 7.5 0.178 60.458 8.8 0.203 60.483 10.1 0.229 60.509 11.4 0.229 60.559 13.8 0.305 60.585 15.1 0.333 60.610 16.4 0.336 60.636 17.7 0.331 60.611 18.9 0.406 60.686 20.1 0.432 60.712 21.4 0.457 60.737 22.7 0.483 60.663 24.0 0.508 60.839 28.5 0.559 60.839 28.5 0.559 60.839 28.5 0.661 60.990 31.6 0.625 60.915 33.1 0.66 60.940 34.5 0.638 61.117 38.9 0.762 61.042 40.3 0.787 61.017 38.9 0.7	0.102	60.382	5.1	
0.152 60.432 7.5 0.178 60.458 8.8 0.203 60.483 10.1 0.229 60.509 11.4 0.254 60.559 13.8 0.305 60.685 15.1 0.33 60.610 16.4 0.336 60.661 18.9 0.406 60.686 20.1 0.432 60.712 21.4 0.432 60.737 22.7 0.433 60.639 28.5 0.558 60.39 28.5 0.559 60.839 28.5 0.559 60.639 26.5 0.554 60.940 34.5 0.665 60.940 34.5 0.666 60.940 34.5 0.762 61.042 40.3 0.777 61.017 38.9 0.762 61.042 40.3 0.787 61.02 49.3 0.838 61.144 45.6 0.88	0.127	60.407	6.3	
0.178 60.458 8.8 0.203 60.483 10.1 0.229 60.509 11.4 0.254 60.534 12.6 0.305 60.585 15.1 0.333 60.610 16.4 0.356 60.636 17.7 0.366 60.636 20.1 0.406 60.686 20.1 0.432 60.712 21.4 0.432 60.763 24.0 0.433 60.763 24.0 0.508 60.839 28.5 0.584 60.864 30.0 0.61 60.890 31.6 0.686 60.9915 33.1 0.666 60.996 36.0 0.737 61.017 38.9 0.762 61.042 40.3 0.762 61.042 40.3 0.787 61.067 41.7 0.838 61.148 44.3 0.84 61.144 45.6 0	0.152	60.432	7.5	
0.203 60.483 10.1 0.229 60.509 11.4 0.254 60.559 13.8 0.305 60.585 15.1 0.33 60.610 16.4 0.356 60.686 20.1 0.406 60.686 20.1 0.432 60.712 21.4 0.432 60.737 22.7 0.483 60.763 24.0 0.508 60.788 25.4 0.533 60.813 26.9 0.559 60.839 28.5 0.554 60.940 34.5 0.666 60.940 34.5 0.686 60.991 37.5 0.737 61.067 41.7 0.813 61.093 43.0 0.787 61.067 41.7 0.883 61.118 44.3 0.889 61.169 46.9 0.914 61.120 49.3 0.94 61.220 49.3 0	0.178	60.458	8.8	
0.229 60.509 11.4 0.224 60.534 12.6 0.279 60.559 13.8 0.305 60.685 15.1 0.33 60.610 16.4 0.356 60.636 17.7 0.381 60.661 18.9 0.406 60.686 20.1 0.432 60.712 21.4 0.457 60.737 22.7 0.483 60.763 24.0 0.508 60.788 25.4 0.533 60.813 26.9 0.559 60.839 28.5 0.584 60.864 30.0 0.61 60.890 31.6 0.737 61.017 38.9 0.762 61.042 40.3 0.777 61.067 41.7 0.838 61.118 44.3 0.844 61.144 45.6 0.889 61.69 46.9 0.914 61.220 49.3 0.	0.203	60.483	10.1	
0.254 60.534 12.6 0.279 60.559 13.8 0.305 60.585 15.1 0.33 60.610 16.4 0.356 60.686 17.7 0.381 60.661 18.9 0.406 60.686 20.1 0.432 60.712 21.4 0.433 60.763 24.0 0.433 60.763 24.0 0.508 60.788 25.4 0.559 60.839 28.5 0.559 60.839 28.5 0.559 60.839 28.5 0.584 60.866 36.0 0.66 60.940 34.5 0.66 60.940 34.5 0.711 60.991 37.5 0.762 61.042 40.3 0.777 61.067 41.7 0.838 61.118 44.3 0.844 61.124 40.3 0.787 61.067 41.7 0.	0.229	60.509	11.4	
0.279 60.559 13.8 0.305 60.585 15.1 0.333 60.610 16.4 0.356 60.636 17.7 0.381 60.661 18.9 0.406 60.686 20.1 0.432 60.712 21.4 0.457 60.737 22.7 0.483 60.763 24.0 0.508 60.839 28.5 0.533 60.813 26.9 0.559 60.839 28.5 0.584 60.866 30.0 0.61 0.8990 31.6 0.635 60.915 33.1 0.666 60.9940 34.5 0.636 60.9966 36.0 0.711 60.991 37.5 0.762 61.042 40.3 0.777 61.067 41.7 0.813 61.993 43.0 0.828 61.144 45.6 0.889 61.169 46.9 <t< td=""><td>0.254</td><td>60.534</td><td>12.6</td><td></td></t<>	0.254	60.534	12.6	
0.305 60.885 15.1 0.33 60.610 16.4 0.356 60.636 17.7 0.381 60.661 18.9 0.406 60.686 20.1 0.432 60.712 21.4 0.432 60.763 24.0 0.4457 60.737 22.7 0.483 60.763 24.0 0.508 60.788 25.4 0.559 60.839 28.5 0.559 60.839 28.5 0.666 60.940 34.5 0.686 60.966 36.0 0.737 61.017 38.9 0.762 61.042 40.3 0.787 61.067 41.7 0.889 61.118 44.3 0.864 61.144 45.6 0.889 61.189 43.0 0.889 61.169 46.9 0.914 61.194 48.1 0.94 61.220 49.3	0.279	60.559	13.8	
0.33 60.610 16.4 0.356 60.636 17.7 0.381 60.661 18.9 0.406 60.686 20.1 0.432 60.712 21.4 0.457 60.737 22.7 0.4433 60.763 24.0 0.508 60.788 25.4 0.533 60.813 26.9 0.559 60.839 28.5 0.564 60.864 30.0 0.61 60.890 31.6 0.635 60.915 33.1 0.666 60.940 34.5 0.686 60.966 36.0 0.711 60.991 37.5 0.787 61.067 41.7 0.813 61.99 46.9 0.787 61.067 41.7 0.888 61.118 44.3 0.889 61.169 46.9 0.991 61.220 49.3 0.995 61.321 53.5 1	0.305	60.585	15.1	
0.386 60.636 17.7 0.381 60.661 18.9 0.406 60.686 20.1 0.432 60.712 21.4 0.433 60.763 24.0 0.508 60.788 25.4 0.533 60.813 26.9 0.559 60.839 28.5 0.564 60.940 31.6 0.635 60.915 33.1 0.66 60.940 34.5 0.686 60.990 31.6 0.737 61.017 38.9 0.762 61.042 40.3 0.787 61.067 41.7 0.838 61.118 44.3 0.864 61.144 45.6 0.838 61.118 44.3 0.965 61.220 49.3 0.965 61.245 50.4 0.991 61.271 51.5 1.067 61.347 54.4 1.092 61.372 55.2	0.33	60.610	16.4	
0.381 60.661 18.9 0.406 60.686 20.1 0.432 60.712 21.4 0.432 60.712 21.4 0.433 60.763 24.0 0.508 60.788 25.4 0.559 60.839 28.5 0.559 60.890 31.6 0.635 60.940 34.5 0.666 60.940 34.5 0.666 60.940 34.5 0.666 60.940 34.5 0.666 60.940 34.5 0.666 60.940 34.5 0.666 60.940 34.5 0.666 60.940 34.5 0.762 61.042 40.3 0.771 61.067 41.7 0.813 61.093 43.0 0.838 61.144 45.6 0.844 61.144 45.6 0.849 61.220 49.3 0.965 61.245 50.4 <td< td=""><td>0.356</td><td>60.636</td><td>17.7</td><td></td></td<>	0.356	60.636	17.7	
0.406 60.686 20.1 0.432 60.712 21.4 0.457 60.737 22.7 0.483 60.763 24.0 0.508 60.788 25.4 0.533 60.813 26.9 0.559 60.839 28.5 0.564 60.864 30.0 0.61 60.890 31.6 0.666 60.940 34.5 0.666 60.940 34.5 0.737 61.017 38.9 0.762 61.042 40.3 0.787 61.067 41.7 0.813 61.993 43.0 0.838 61.118 44.3 0.844 61.124 40.3 0.965 61.220 49.3 0.965 61.245 50.4 0.991 61.271 51.5 1.067 61.347 54.4 1.092 61.372 55.2 1.168 61.448 57.3	0.381	60.661	18.9	
0.432 60.712 21.4 0.457 60.737 22.7 0.483 60.763 24.0 0.508 60.788 25.4 0.533 60.813 26.9 0.559 60.839 28.5 0.584 60.864 30.0 0.61 60.890 31.6 0.666 60.940 34.5 0.666 60.940 34.5 0.762 61.042 40.3 0.762 61.042 40.3 0.762 61.042 40.3 0.767 61.067 41.7 0.813 61.093 43.0 0.838 61.118 44.3 0.864 61.120 49.3 0.914 61.220 49.3 0.965 61.245 50.4 0.991 61.271 51.5 1.067 61.347 54.4 1.092 61.372 55.2 1.118 61.398 56.0	0.406	60.686	20.1	
0.457 60.737 22.7 0.483 60.763 24.0 0.508 60.788 25.4 0.533 60.813 26.9 0.559 60.839 28.5 0.635 60.915 33.1 0.666 60.940 34.5 0.686 60.9915 33.1 0.666 60.940 34.5 0.686 60.991 37.5 0.711 60.991 37.5 0.762 61.042 40.3 0.787 61.067 41.7 0.813 61.093 43.0 0.838 61.144 45.6 0.889 61.69 46.9 0.914 61.220 49.3 0.965 61.245 50.4 0.991 61.271 51.5 1.016 61.296 52.5 1.041 61.321 53.5 1.067 61.347 54.4 1.092 61.372 55.2 <td< td=""><td>0.432</td><td>60.712</td><td>21.4</td><td></td></td<>	0.432	60.712	21.4	
0.483 60.763 24.0 0.508 60.788 25.4 0.533 60.813 26.5 0.559 60.839 28.5 0.584 60.864 30.0 0.61 60.890 31.6 0.635 60.915 33.1 0.66 60.940 34.5 0.686 60.966 36.0 0.711 60.991 37.5 0.737 61.017 38.9 0.762 61.042 40.3 0.787 61.067 41.7 0.838 61.118 44.3 0.844 61.144 45.6 0.889 61.220 49.3 0.944 61.220 49.3 0.995 61.347 54.4 1.092 61.372 55.2 1.041 61.321 53.5 1.067 61.347 54.4 1.092 61.372 55.2 1.143 61.423 56.7 1	0.457	60.737	22.7	
0.508 60.788 25.4 0.533 60.813 26.9 0.559 60.839 28.5 0.584 60.864 30.0 0.61 60.890 31.6 0.635 60.915 33.1 0.66 60.940 34.5 0.686 60.966 36.0 0.711 60.991 37.5 0.762 61.042 40.3 0.762 61.042 40.3 0.787 61.067 41.7 0.813 61.93 43.0 0.888 61.118 44.3 0.984 61.245 50.4 0.994 61.220 49.3 0.965 61.245 50.4 0.991 61.271 51.5 1.016 61.321 53.5 1.067 61.347 54.4 1.092 61.372 55.2 1.143 61.423 56.7 1.168 61.448 57.3 1.	0.483	60.763	24.0	
0.533 60.813 26.9 0.559 60.839 28.5 0.584 60.864 30.0 0.61 60.890 31.6 0.635 60.915 33.1 0.666 60.940 34.5 0.686 60.966 36.0 0.711 60.991 37.5 0.737 61.017 38.9 0.762 61.042 40.3 0.787 61.067 41.7 0.838 61.118 44.3 0.864 61.144 45.6 0.889 61.1220 49.3 0.94 61.220 49.3 0.94 61.220 49.3 0.965 61.245 50.4 0.991 61.271 51.5 1.016 61.321 53.5 1.067 61.347 54.4 1.092 61.372 55.2 1.143 61.423 56.7 1.143 61.448 57.3 1	0.508	60.788	25.4	
0.559 60.839 28.5 0.584 60.864 30.0 0.61 60.890 31.6 0.635 60.915 33.1 0.666 60.940 34.5 0.686 60.966 36.0 0.711 60.991 37.5 0.737 61.017 38.9 0.762 61.042 40.3 0.787 61.067 41.7 0.838 61.118 44.3 0.864 61.144 45.6 0.889 61.169 46.9 0.914 61.220 49.3 0.965 61.245 50.4 0.991 61.271 51.5 1.016 61.296 52.5 1.041 61.347 54.4 1.092 61.372 55.2 1.118 61.423 56.7 1.118 61.423 56.7 1.168 61.448 57.3 1.194 61.474 57.7	0.533	60.813	26.9	
0.584 60.864 30.0 0.61 60.890 31.6 0.635 60.915 33.1 0.66 60.940 34.5 0.686 60.996 36.0 0.711 60.991 37.5 0.737 61.017 38.9 0.762 61.042 40.3 0.787 61.067 41.7 0.813 61.93 43.0 0.884 61.144 45.6 0.889 61.169 46.9 0.914 61.220 49.3 0.965 61.245 50.4 0.991 61.271 51.5 1.016 61.296 52.5 1.041 61.31 53.5 1.067 61.347 54.4 1.092 61.372 55.2 1.118 61.423 56.7 1.168 61.448 57.3 1.194 61.474 57.7	0.559	60.839	28.5	
0.61 60.890 31.6 0.635 60.915 33.1 0.66 60.940 34.5 0.686 60.966 36.0 0.711 60.991 37.5 0.737 61.017 38.9 0.762 61.042 40.3 0.787 61.067 41.7 0.813 61.93 43.0 0.838 61.118 44.3 0.864 61.424 45.6 0.889 61.169 46.9 0.914 61.200 49.3 0.965 61.245 50.4 0.991 61.271 51.5 1.016 61.296 52.5 1.041 61.372 55.2 1.118 61.398 56.0 1.143 61.448 57.3 1.194 61.474 57.7	0.584	60.864	30.0	
0.635 60.915 33.1 0.66 60.940 34.5 0.686 60.966 36.0 0.711 60.991 37.5 0.737 61.017 38.9 0.762 61.042 40.3 0.787 61.067 41.7 0.813 61.993 43.0 0.838 61.118 44.3 0.864 61.144 45.6 0.889 61.169 46.9 0.914 61.220 49.3 0.965 61.245 50.4 0.991 61.271 51.5 1.016 61.296 52.5 1.041 61.321 53.5 1.067 61.347 54.4 1.092 61.372 55.2 1.118 61.398 56.0 1.143 61.448 57.3 1.194 61.474 57.7	0.61	60.890	31.6	
0.66 60.940 34.5 0.6886 60.966 36.0 0.711 60.991 37.5 0.737 61.017 38.9 0.762 61.042 40.3 0.787 61.067 41.7 0.813 61.093 43.0 0.838 61.118 44.3 0.864 61.144 45.6 0.889 61.169 46.9 0.914 61.220 49.3 0.965 61.245 50.4 0.991 61.271 51.5 1.016 61.296 52.5 1.041 61.321 53.5 1.067 61.347 54.4 1.092 61.372 55.2 1.118 61.398 56.0 1.143 61.448 57.3 1.168 61.448 57.3 1.194 61.474 57.7	0.635	60.915	33.1	
0.686 60.966 36.0 Hydrochamber and Stone Surround 0.711 60.991 37.5 Hydrochamber and Stone Surround 0.737 61.017 38.9 Stone Surround 0.762 61.042 40.3 Hydrochamber and Stone Surround 0.787 61.067 41.7 Hydrochamber and Stone Surround 0.813 61.093 43.0 Hydrochamber and Stone Surround 0.813 61.118 44.3 Hydrochamber and Stone Surround 0.914 61.144 45.6 Hydrochamber and Hydrochydrophydrenand Hydrochamber and Hydrohydrochamber and Hydrohydroph	0.66	60.940	34.5	
0.711 60.991 37.5 0.737 61.017 38.9 0.762 61.042 40.3 0.787 61.067 41.7 0.813 61.093 43.0 0.838 61.118 44.3 0.864 61.144 45.6 0.889 61.169 46.9 0.914 61.220 49.3 0.965 61.245 50.4 0.991 61.271 51.5 1.016 61.321 53.5 1.067 61.347 54.4 1.092 61.372 55.2 1.118 61.398 56.0 1.143 61.443 57.3 1.108 61.448 57.3 1.194 61.474 57.7	0.686	60.966	36.0	Hydrochamber and
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.711	60.991	37.5	Stone Surround
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.737	61.017	38.9	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.762	61.042	40.3	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.787	61.067	41.7	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.813	61.093	43.0	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.838	61.118	44.3	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.864	61.144	45.6	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.889	61.169	46.9	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.914	61.194	48.1	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.94	61.220	49.3	
0.991 61.271 51.5 1.016 61.296 52.5 1.041 61.321 53.5 1.067 61.347 54.4 1.092 61.372 55.2 1.118 61.398 56.0 1.143 61.423 56.7 1.168 61.448 57.3 1.194 61.474 57.7	0.965	61.245	50.4	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0.991	61.271	51.5	
1.041 61.321 53.5 1.067 61.347 54.4 1.092 61.372 55.2 1.118 61.398 56.0 1.143 61.423 56.7 1.168 61.448 57.3 1.194 61.474 57.7	1.016	61.296	52.5	
1.067 61.347 54.4 1.092 61.372 55.2 1.118 61.398 56.0 1.143 61.423 56.7 1.168 61.448 57.3 1.194 61.474 57.7 1.000 0.400 50.2	1.041	61.321	53.5	
1.092 61.372 55.2 1.118 61.398 56.0 1.143 61.423 56.7 1.168 61.448 57.3 1.194 61.474 57.7 1.092 0.1440 50.2	1.067	61.347	54.4	1
1.118 61.398 56.0 1.143 61.423 56.7 1.168 61.448 57.3 1.194 61.474 57.7 1.00 01.470 50.2	1.092	61.372	55.2	-1
1.143 61.423 56.7 1.168 61.448 57.3 1.194 61.474 57.7 1.00 01.400 50.2	1.118	61.398	56.0	1
1.168 61.448 57.3 1.194 61.474 57.7 1.00 52.2	1.143	61.423	56.7	-1
1.194 61.474 57.7 1.002 01.402 50.2	1.168	61.448	57.3	-1
	1.194	61.474	57.7	-1
1.219 61.499 58.0	1,219	61.499	58.0	
1.245 61.525 58.1	1.245	61.525	58.1	-

Network Summary for Critical Event 15 minutes

Α	Peak Outflow (lps)	47.63
в	Max Water Level (m)	61.22
с	Storage Provided	58.10
D	Total exfiltration volume (1000-m ³)	0.000
Е	Total discharge to outfall (m3)	42.9
F	Total amount discharged during event (m3) [= D + E]	42.9
G	Total run-off during event (m3)	27.3
н	Newtork Storage (m3) [= G - (F + C)]	-73.7
	Total Flooded Volume (ha-mm)	0

APPENDIX C

Ground Investigation Report

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.le Web: www.gii.ie

Ground Investigations Ireland Dunningstown Road Kilkenny County Council Ground Investigation Report

October 2022

Directors: Fergal McNamara (MD), Conor Finnerty, Aisling McDonnell & Barry Sexton Ground Investigations Ireland Limited | Registered in Ireland Company Registration No.: 405726

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gil.ie Web: www.gli.ie

DOCUMENT CONTROL SHEET

Project Title	Dunningstown Road
Engineer	Kilgallen & Partners
Client	Kilkenny Council
Project No	12128-08-22
Document Title	Ground Investigation Report

Rev.	Status	Author(s) Reviewed By		Approved By	Issue Date	
А	Interim	B Sexton	C Finnerty	B Sexton	Dublin	14 October 2022

Ground Investigations Ireland Ltd. present the results of the fieldworks and laboratory testing in accordance with the specification and related documents provided by or on behalf of the client The possibility of variation in the ground and/or groundwater conditions between or below exploratory locations or due to the investigation techniques employed must be taken into account when this report and the appendices inform designs or decisions where such variation may be considered relevant. Ground and/or groundwater conditions may vary due to seasonal, man-made or other activities not apparent during the fieldworks and no responsibility can be taken for such variation. The data presented and the recommendations included in this report and associated appendices are intended for the use of the client and the client's geotechnical representative only and any duty of care to others is excluded unless approved in writing.

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gil.ie Web: www.gil.ie

GROUND INVESTIGATIONS IRELAND

Geotechnical & Environmental

CONTENTS

1.0	Preamble1
2.0	Overview1
2.1.	Background1
2.2.	Purpose and Scope1
3.0	Subsurface Exploration1
3.1.	General1
3.2.	Trial Pits2
3.3.	Soakaway Testing
3.4.	Dynamic Probing
3.5.	Ground Penetrating Radar (GPR) Survey2
3.6.	Surveying2
3.7.	Laboratory Testing
4.0	Ground Conditions
4.1.	General
4.2.	Groundwater4
4.3.	Laboratory Testing4
4.3.1.	Geotechnical Laboratory Testing4
4.3.1.	Chemical Laboratory Testing4
5.0	Recommendations & Conclusions5
5.1.	General5
5.2.	Foundations5
5.3.	Excavations5
5.4.	Soakaway Design5

APPENDICES

Appendix 1	Site Location Plan
Appendix 2	Trial Pit Records
Appendix 3	Soakaway Records
Appendix 4	Dynamic Probe Records
Appendix 5	GPR Survey
Appendix 6	Laboratory Testing

1.0 Preamble

On the instructions of Kilgallen & Partners Consulting Engineers, a site investigation was carried out by Ground Investigations Ireland Ltd., in October 2022 at the site of the proposed residential development at Dunningstown Road, Kilkenny City.

2.0 Overview

2.1. Background

It is proposed to construct a new residential development comprising houses at the proposed site. At the time of the site investigation the site was occupied by two building which had been in use as weather monitoring stations. The proposed construction is envisaged to consist of conventional foundations and pavement make up with some local excavations for services and plant.

2.2. Purpose and Scope

The purpose of the site investigation was to investigate subsurface conditions utilising a variety of investigative methods in accordance with the project specification. The scope of the work undertaken for this project included the following:

- Visit project site to observe existing conditions
- Carry out 7 No. Trial Pits to a maximum depth of 2.5m BGL
- Carry out 1 No. Soakaway to determine a soil infiltration value to BRE digest 365
- Carry out 7 No. Dynamic Probes to determine strength/density characteristics
- Carry out a GPR survey of the site
- Geotechnical Laboratory testing
- Report with recommendations

3.0 Subsurface Exploration

3.1. General

During the ground investigation a programme of intrusive investigation specified by the Consulting Engineer was undertaken to determine the sub surface conditions at the proposed site. Regular sampling and insitu testing was undertaken in the exploratory holes to facilitate the geotechnical descriptions and to enable laboratory testing to be carried out on the soil samples recovered during excavation and drilling. The procedures used in this site investigation are in accordance with Eurocode 7 Part 2: Ground Investigation and testing (ISEN 1997 – 2:2007) and B.S. 5930:2015.

3.2. Trial Pits

The trial pits were excavated using a 5T tracked excavator at the locations shown in Figure 1 in Appendix 1. The locations were checked using a CAT scan to minimise the potential for encountering services during the excavation. The trial pits were sampled, logged and photographed by a Geotechnical Engineer/Engineering Geologist prior to backfilling with arisings. Notes were made of any services, inclusions, pit stability, groundwater encountered and the characteristics of the strata encountered and are presented on the trial pit logs which are provided in Appendix 2 of this Report.

3.3. Soakaway Testing

The soakaway testing was carried out in selected trial pits at the locations shown in the exploratory hole location plan in Appendix 1. These pits were carefully excavated and filled with water to assess the infiltration characteristics of the proposed site. The pits were allowed to drain and the drop in water level was recorded over time as required by BRE Digest 365. The pits were logged prior to completing the soakaway test and were backfilled with arising's upon completion. The soakaway test results are provided in Appendix 3 of this Report.

3.4. Dynamic Probing

The dynamic probe tests (DPH) were carried out at the locations shown in the location plan in Appendix 1 in accordance with B.S. 1377: Part 9 1990. The test consists of mechanically driving a cone with a 50kg weight in 100mm intervals and monitoring the number of blows required. An equivalent Standard Penetration Test (SPT) 'N' value may be calculated by dividing the total number of blows over a 300mm drive length by 1.5. The dynamic probe logs are provided in Appendix 4 of this Report.

3.5. Ground Penetrating Radar (GPR) Survey

A GPR survey was completed across the site to identify buried services and other analogies. The survey was limited by the fact that the site was heavy overgrown at the time of the survey. The results of the survey are presented in Appendix 5 of this Report.

3.6. Surveying

The exploratory hole locations have been recorded using a KQ GEO Technologies KQ-M8 System which records the coordinates and elevation of the locations to ITM or Irish National Grid as required by the project specification. The coordinates and elevations are provided on the exploratory hole logs in the appendices of this Report.

3.7. Laboratory Testing

Samples were selected from the exploratory holes for a range of geotechnical and environmental testing to assist in the classification of soils and to provide information for the proposed design.

Environmental & Chemical testing as required by the specification, including the pH and sulphate testing was carried out by Element Materials Technology Laboratory in the UK.

Geotechnical testing consisting of moisture content, Atterberg limits and Particle Size Distribution (PSD) tests were carried out in Professional Soil Laboratory (PSL) in the UK.

The results of the laboratory testing are included in Appendix 6 of this Report.

4.0 Ground Conditions

4.1. General

The ground conditions encountered during the investigation are summarised below with reference to insitu and laboratory test results. The full details of the strata encountered during the ground investigation are provided in the exploratory hole logs included in the appendices of this report.

The sequence of strata encountered were relatively consistent across the site and generally comprised;

- Topsoil/Surfacing
- Made Ground
- Granular Deposits

TOPSOIL: Topsoil was encountered in the majority of the exploratory holes and was present to a maximum depth of 0.30m BGL.

SURFACING: Tarmacadam was encountered at TP-01 and TP-02 to a maximum depth of 0.10m BGL.

MADE GROUND: Made Ground deposits were encountered beneath the Topsoil/Surfacing and were present to a depth of between 0.30m and 1.00m BGL. These deposits were described generally as brown/grey slightly clayey sandy fine to coarse subrounded to rounded Gravel with occasional fragments of plastic and metal.

GRANULAR DEPOSITS: Granular deposits were encountered within/below/at the base of the cohesive deposits and were typically described as *grey/brown slightly clayey sandy fine to coarse subrounded to rounded GRAVEL with many subrounded to rounded cobbles and boulders.* The secondary sand/gravel and silt/clay constituents varied across the site and with depth while occasional or frequent cobble and boulder content also present where noted on the exploratory hole logs.

Based on the SPT N values the deposits are typically dense. The gravels encountered at TP-04 were found to be loose to a depth of 1.50m BGL after which they became dense. It should be noted that many of the trial pits where granular deposits were encountered, experienced instability. This was described either as side wall spalling or as side wall collapse in the remarks section at the base of the trial pit logs.

4.2. Groundwater

No groundwater was noted during the investigation however it should be noted that these exploratory holes did not remain open for sufficiently long periods of time to establish the hydrogeological regime and groundwater levels would be expected to vary with the time of year, rainfall, nearby construction and other factors.

4.3. Laboratory Testing

4.3.1. Geotechnical Laboratory Testing

The geotechnical laboratory results were not available at the time of writing this report.

4.3.2. Chemical Laboratory Testing

The chemical laboratory results were not available at the time of writing this report.

The results from the completed laboratory testing will be included in Appendix 7 of this report.

5.0 Recommendations & Conclusions

5.1. General

The recommendations given and opinions expressed in this report are based on the findings as detailed in the exploratory hole records. Where an opinion is expressed on the material between exploratory hole locations, this is for guidance only and no liability can be accepted for its accuracy. No responsibility can be accepted for conditions which have not been revealed by the exploratory holes. Limited information has been provided at the ground investigation stage and any designs based on the recommendations or conclusions should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory hole logs.

5.2. Foundations

An allowable bearing capacity of 125 kN/m² is recommended for conventional strip or pad foundations on the dense of medium dense granular deposits at a depth of 1.0m BGL.

The possibility for variation in the depth of the made ground in the vicinity of these foundations should be considered and foundation inspections should be carried out. Any soft spots encountered at the proposed foundation depths should be excavated and replaced with lean mix concrete. Where the granular deposits are deeper, lean mix trench fill is recommended to achieve the recommended allowable bearing capacity.

A ground bearing floor slab is recommended to be based on the medium dense granular deposits with an appropriate depth of compacted hardcore specified by the consulting engineer and in accordance with the limits and guidelines in SR21:2014 +A1:2016 and/or NRA SRW CL808 Type E granular stone fill. Made Ground should be removed below any proposed floor slabs. Where the depth of Made Ground/Soft deposits exceeds 0.9m then suspended floor slabs should be considered.

5.3. Excavations

Short term temporary excavations in the cohesive deposits will remain stable for a limited time only and will require to be appropriately battered or the sides supported if the excavation is below 1.25m BGL or is required to permit man entry.

Any excavations which penetrate the granular deposits will require to be appropriately battered or the sides supported.

The stability noted on the trial pit logs should be consulted when determining the most appropriate construction methods for excavations.

5.4. Soakaway Design

An infiltration rate of f=1.31 x 10⁻⁵ m/s was calculated for the soakaway location SA-01.

The recommendations provided in this report should be verified in the design of the proposed buildings, using the full details of the loading conditions and taking into consideration the allowable tolerable

settlements/movements that the building can accommodate. The founding strata should be inspected and verified by a suitably qualified engineer prior to construction of the building foundations.

APPENDIX 1 - Figures

APPENDIX 2 – Trial Pit Records

	Ground Investigations Ire			land	Ltd	Site Dunningstown Road	Trial Pit Number SA01	
Machine : 5	T Tracked Excavator rial Pit	Dimensi 1.80m x	ons 0.60m x 1.50m (L x W x D)	Ground	Level (mOD)	Client Kilgallen & Partners		Job Number 12128-08-22
		Locatior	1	Dates	4/10/2022	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
0.50	В				(0,10) 0.10 - (0.30) - 0.40	TOPSOIL MADE GROUND: Reddist fine to coarse subrounded occasional fragments of p Dense grey/brown sandy t rounded GRAVEL with sor cobbles	n brown/grey slightly clayey s to rounded Gravel with lastic and metal ine to coarse subrounded to ne subrounded to rounded	sandy
					- (1.10)			
1.50	В					Complete at 1.50m		
Plan						Remarks		
					•••	No groundwater encountere Trial pit spalling from 1.00m	d BGL	
		•		•	•••	Complete at 1.50m BGL Soakaway test carried out ir BRE Digest 365 Trial pit backfilled upon com	n trial pit upon completion in a pletion of soakaway	accordance with
					•••	. ,		
				•				
· ·		•		•	· ·	Scale (approx)	Logged By	Figure No. 12128-08-22.SA01

	Ground Investigations Ir				Ltd	Site Dunningstown Road		Trial Pit Number TP01
Machine : 5	T Tracked Excavator	Dimens	ions	Ground	Level (mOD)	Client		Job
Method : T	rial Pit	3.40m >	(1.30m x 2.50m (L x W x D)			Kilgallen & Partners		12128-08-2
		Location	n	Dates 02	4/10/2022	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend
0.50	В				(0,10) 0,10 (0.20) 0,30 (0.70) 1,00 1,00	TARMACADAM FILL: Grey sandy coarse a MADE GROUND: Reddist coarse subrounded to rou subrounded to rounded co occasional fragments of re Dense grey/brown slightly subrounded to rounded G rounded cobbles and boul	Ingular Gravel (Crushed Roc a brown/grey clayey sandy fin ded Gravel with occasional bbles and boulders and d brick and clay pipe clayey sandy fine to coarse RAVEL with many subrounded ders	ad to
1.50	В				(1.10)			
2.50	В					Complete at 2.50m		
Plan		•		•	••••	Remarks	d	
 	· ·				 	Trial pit spalling from 0.40m Refusal at 2.50m BGL Trial pit backfilled upon com	BGL pletion	
 	· ·				 			
						Scale (approx) 1:25	Logged By AB	Figure No. 12128-08-22.TP0

	Grou	und Investigations Irel		land	Ltd	Site Dunningstown Road		Trial Pit Number TP02
Machine:5 Method:T	T Tracked Excavator rial Pit	Dimensio 3.40m x 1	ns 1.30m x 2.50m (L x W x D)	Ground	Level (mOD)	Client Kilgallen & Partners		Job Number 12128-08-22
		Location		Dates 04	/10/2022	Engineer		Sheet 1/1
Depth (ṁ)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
0.50	В				(0.10) 0.10 (0.20) 0.30 (0.60)	TARMACADAM FILL: Grey sandy coarse a MADE GROUND: Reddist Clay with some fragments crushed rock fill	ngular Gravel (Crushed Roc brown slightly sandy gravel of red brick, concrete and	k Fill)
1.50	в				0.90	Dense grey/brown slightly subrounded to rounded G rounded cobbles and boul	clayey sandy fine to coarse RAVEL with some subrounde ders	ed to
0.50					2.50			
2.50	В					Complete at 2.50m		
Plan .						Remarks No groundwater encountere Trial pit spalling from 0.40m	d BGL	
		·				Refusal at 2.50m BGL Trial pit backfilled upon com	pletion	
· · ·	· ·	•						
		•						
					 S	Scale (approx) 1:25	Logged By AB	Figure No. 12128-08-22.TP02

Ground Investigations Ireland Ltd www.gii.ie	Trial Pit Number TP03
Machine : 5T Tracked Excavator Dimensions Ground Level (mOD) Client Method : Trial Pit 3.40m x 1.30m x 2.50m (L x W x D) Ground Level (mOD) Client	Job Number 12128-08-22
Location Dates 04/10/2022 Engineer	Sheet 1/1
Depth (m) Sample / Tests Water Depth (m) Field Records Level (mOD) Depth (m) Depth (m) Description	Legend S
(0.20) (0.20) (0.20) TOPSOIL Loose reddish brown/grey slightly clavey gravelly fine t	0
Coarse SAND with some subrounded to rounded cobble Coarse SAND with some subrounded to rounded cobble (Possible Made Ground) Dense grey/brown sandy fine to coarse subrounded to	
0.50 B 1.50 B 2.50 B	
Plan Remarks	
No groundwater encountered Trial pit spalling from surface . .	
	Figure No.

	Grou	nd Investigations Ireland Ltd www.gii.ie			Ltd	Site Dunningstown Road		Trial Pit Number TP04
Machine: 5 Method : T	T Tracked Excavator rial Pit	Dimensi 3.40m >	ions x 1.30m x 2.20m (L x W x D)	Ground Level (mOD)		Client Kilgallen & Partners		Job Number 12128-08-22
		Location	n	Dates	4/10/2022	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
0.50	В				(0.20) 0.20 (0.30) 0.50	TOPSOIL Loose reddish brown/grey coarse SAND with some s (Possible Made Ground) Loose grey/brown sandy f rounded GRAVEL with sor cobbles	slightly clayey gravelly fine ubrounded to rounded cobb ine to coarse subrounded to ne subrounded to rounded	to ples
1.50	в				(1.00) 	Dense grey/brown sandy t rounded GRAVEL with sor cobbles	fine to coarse subrounded to ne subrounded to rounded	
2.20	В					Complete at 2.20m		
Plan .	· ·				<u>F</u>	Remarks		
 	· ·	•			 	No groundwater encountere Trial pit spalling from surfac Refusal at 2.20m BGL Trial pit backfilled upon com	ed e pletion	
· ·					 			
		·		•		Scale (approx) 1:25	Logged By AB	Figure No. 12128-08-22.TP03

S	Grou	und Investigations Ireland Ltd www.gii.ie		Ltd	Site Dunningstown Road		Trial Pit Number TP05	
Machine: 5 Method : T	T Tracked Excavator rial Pit	Dimensio 3.50m x 2	ns 1.20m x 2.50m (L x W x D)	Ground	Level (mOD)	Client Kilgallen & Partners		Job Number 12128-08-22
		Location		Dates 04	/10/2022	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend S
0.50	в				(0.30) 0.30 (0.60)	TOPSOIL MADE GROUND: Reddish gravelly fine to coarse Sar metal and plastic	n brown/grey slightly clayey Id with occasional fragments	s of
					0.90	Dense grey/brown sandy frounded GRAVEL with sor cobbles	ine to coarse subrounded to ne subrounded to rounded	••••••••••••••••••••••••••••••••••••••
1.50	В				(1.60)			
2.50	В					Complete at 2.50m		
Plan				-		Remarks		
				-		Trial pit spalling from 1.00m Refusal at 2.50m BGL Trial pit backfilled upon com	a BGL pletion	
· ·		•						
					· · · s	Scale (approx)	Logged By	Figure No.
						1:25	AB	12128-08-22.TP05

	Grou	nd In	vestigations Ire www.gii.ie	land	Ltd	Site Dunningstown Road		Trial Pit Number TP06
Machine : 5 Method : Tr	T Tracked Excavator rial Pit	Dimensi 3.20m >	ions < 1.30m x 2.30m (L x W x D)	Ground	Level (mOD)	Client Kilgallen & Partners		Job Number 12128-08-22
		Location	n	Dates	4/10/2022	Engineer		Sheet 1/1
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend Safe
0.50	в				(0.20) 0.20 (0.80)	TOPSOIL Loose reddish brown/grey coarse SAND with some s (Possible Made Ground)	slightly clayey gravelly fine ubrounded to rounded cobb	to ples
1.50	в				- 1.00 - 1.00 	Dense grey/brown sandy f rounded GRAVEL with sor cobbles	ine to coarse subrounded to nounded to subrounded to rounded	
2 20	в				2.30	Complete at 2.30m		
2.30	В					Complete at 2.30m		
Plan .		•		•	I	Remarks	d	
						rial pit spalling from 0.50m Refusal at 2.30m BGL Trial pit backfilled upon com	pletion	
 	· ·				· ·			
					s	Scale (approx) 1:25	Logged By AB	Figure No. 12128-08-22.TP06

	Grou	nd In	vestigations Ire www.gii.ie	land	Ltd	Site Dunningstown Road		Trial Pit Number TP07	
Machine: 5	T Tracked Excavator rial Pit	Dimens 3.20m x	ions x 1.30m x 2.30m (L x W x D)	Ground	Level (mOD)	Client Kilgallen & Partners		Job Number 12128-08-2	22
		Locatio	n	Dates	4/10/2022	Engineer		Sheet 1/1	
Depth (m)	Sample / Tests	Water Depth (m)	Field Records	Level (mOD)	Depth (m) (Thickness)	D	escription	Legend	Water
0.50	В				(0.20) 0.20 (0.30) 0.50 (0.50)	TOPSOIL Loose reddish brown/grey coarse SAND with some s (Possible Made Ground) Medium dense grey/browr subrounded to rounded G rounded cobbles	slightly clayey gravelly fine t ubrounded to rounded cobb a sandy fine to coarse RAVEL with some subrounde	ed to	
1.50	в				1.00	Dense grey/brown sandy t rounded GRAVEL with sor cobbles	ine to coarse subrounded to ne subrounded to rounded		
2.30	В					Complete at 2.30m			
Plan				•	'	Remarks	d		
						Trial pit spalling from 0.40m Refusal at 2.30m BGL Trial pit backfilled upon com	BGL pletion		
· ·	· ·								
						Scale (approx)	Logged By	Figure No.	 דו
1						1.20			

APPENDIX 3 – Soakaway Records

Ground Investigations Ireland

SA01

Soakaway Test to BRE Digest 365 Trial Pit Dimensions: 1.80m x 0.60m 1.50m (L x W x D)

Date	Time	Water level (m bgl)
04/10/2022	0	-0.500
04/10/2022	1	-0.510
04/10/2022	5	-0.590
04/10/2022	15	-0.740
04/10/2022	30	-0.800
04/10/2022	80	-0.970
04/10/2022	125	-1.090
04/10/2022	194	-1.260

Start depth 0.50	Depth of Pit 1.500		Diff 1.000	75% full 0.75	25%full 1.25
Length of pit (m) 1.500) Width of pit (m) 0.600			75-25Ht (m) 0.500	Vp75-25 (m3) 0.45
Tp75-25 (from g	ıraph) (s)	11400		50% Eff Depth 0.500	ap50 (m2) 3
f =	1.316E-05	m/s		0.000	C C

Catherinestown House, Hazelhatch Road, Newcastle, Co. Dublin. D22 YD52

Tel: 01 601 5175 / 5176 Email: info@gii.ie Web: www.gii.ie

APPENDIX 4 – Dynamic Probe Records

Ground Investigations Ireland Ltd					Site								Probe Number	
	www.gii.ie				Dunnir	ngstown F	Road					DP01)1
Machine : 1 Method : [ēcop 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm	Ground I	₋evel (mOD)	Client Kilgalle	en & Partr	ners						Job Numb 12128-0	er 8-22
		Location	Dates 04/1	0/2022	Enginee	er						Sheet 1/1		
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 3	4 2	7 3	30						
0.00-0.10	11			0.00				Ť-	+					F
0.10-0.20	11			-										
0.20-0.30 0.30-0.40	5 23			-										
0.40-0.50	17													
0.60-0.70	18													-
0.70-0.80	21			-										
0.90-1.00	26			-										
				1.00 										
				-										-
				-										
				- 1.50										
				-										
				-										-
				- 2.00										
				-										
				-				<u> </u>						
				-										-
				2.50 										
				-										
				-										
				3.00										-
				-										
				-										
				-										-
				-										
				-										
				4.00 										
				-										-
				-										
				- 4.50										
				-										
				-										\vdash
				5.00										
Remarks Refusal at	t 1.00m BGL										S (a	cale pprox)	Logge By	∍d
											1	1:25	AE	3
											F	igure I	No.	
											1	2128-0)8-22.C	P01

Ground Investigations Ireland Ltd						Site							e ber
	www.gii.ie						Dunningstown Road						
Machine : T	Tecop 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm	Ground I	Level (mOD)	Client Kilgall	en & Partne	rs					Job Numi 12128-'	ber 08-22
		Location	Dates 04/1	10/2022	Engine	ər						Shee 1/	t 1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	3 6	Blows	for Dep	oth Incre	ement	24	27	30
0.00-0.10	26			0.00								+	+
0.10-0.20	15			-									
0.20-0.30 0.30-0.40	15 14			-									
0.40-0.50 0.50-0.60	9			 								-	
0.60-0.70	10			-									-
0.70-0.80 0.80-0.90	15 12			_									
0.90-1.00	15			 									
1.10-1.20	20		-										
1.20-1.30	21												
1.30-1.40	50			-									30
				1.50									
				-									
				-									
				2.00									
				-									
				- -									
				2.50									
				-									
				-									
				-									
				3.50 									
				-									
				4.00									-
				-									
			-	-									
				4.50									
												+	+
				-									
				5.00									
Remarks Refusal a	t 1.40m BGL										Scale (approx) Logg) By	ed
											1:25	A	в
											Figure	No.	
											12128	-08-22.[DP02

Ground Investigations Ireland Ltd						Site Dunningstown Road								Probe Numb	
Machine : T Method : D	recop 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm	Ground	Level (mOD)	Client Kilgall	en & Pa	Irtners							Job Num 12128-'	ber 08-22
		Location	Dates	10/2022	Engine	er								Shee 1/	t 1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	36	6	Blows	for De 12	pth In 15	cremen 18	t 21	24 2	27	30
0.00-0.10	1			0.00	L										╞
0.10-0.20	3			- 											+
0.30-0.40	2													<u> </u>	+
0.40-0.50	6			0.50											
0.60-0.70	6														
0.80-0.90	27														
0.90-1.00	30			1.00											30
				-											\perp
				- 											
				 1.50											T
				- -											+
				- - -											+
				2.00											
				-											+
				-										<u> </u>	+
				— 2.50 —										<u> </u>	+
				- 											
				-											\square
				3.00											+
				-											+
				-											
				3.50											
				-											+
				- -											+
				4.00											+
				-											
				- - 											
				4.50											+
				-										<u> </u>	+
				-											\perp
				- 											
Remarks Refusal at	t 1.00m BGL	1		0.00		<u> </u>		1	1		1		Scale approx)	Logg By	,ed
													1:25	A	В
												F	Figure	No.	
													12128-0	08-22.0	DP03

Ground Investigations Ireland Ltd						Site Dunningstown Road								robe umber)P04	
Machine : T Method : D	ecop 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm	Ground	Level (mOD)	Client Kilgalle	en & Partn	ers						Job Numł 12128-()8-22	
		Location	Dates 04/*	10/2022	Enginee	r							Sheet 1/ [.]	t 1	
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0		Blow	s for De	pth Inc	rement					
0.00-0.10	0			0.00			9		15			4 2		30 	
0.10-0.20	3			 											
0.20-0.30 0.30-0.40	3 2			- 											
0.40-0.50 0.50-0.60	2 3			 0.50										\Box	
0.60-0.70	3													\vdash	
0.70-0.80 0.80-0.90	3 3													+	
0.90-1.00	2												<u> </u>		
1.10-1.20	3														
1.20-1.30 1.30-1.40	3			= - 										Γ	
1.40-1.50	2			 										\vdash	
1.60-1.70	6			-										+	
1.70-1.80	8						1							L	
1.90-2.00	30			-										30	
				2.00 											
				= =										\vdash	
				-										\vdash	
				2.50 				_					<u> </u>		
				- -											
														Γ	
				3.00 										\vdash	
				-										\vdash	
													L		
				3.50 											
				-										\vdash	
				4.00										+	
														\vdash	
				- 											
				4.50											
														\vdash	
				- 										\vdash	
				5.00									<u> </u>	\vdash	
Remarks Refusal at	t 2.00m BGL										S (a	cale pprox)	Logg By	ed	
												1:25	AE	3	
											F	igure l	١ ٥.		
											1	2128-0)8-22.0)P04	

Ground Investigations Ireland Ltd				Site							Probe Numbe) ber	
www.gii.ie			Dunningstown Road								DP05			
Machine : 1 Method : [Гесор 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm	Ground I	Level (mOD)	D) Client Kilgallen & Partners					Job Number 12128-08-)er)8-22		
		Location	Dates 04/1	10/2022	Engineer							Sheet 1/1		
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0 :	36	B 9	lows for I 12	Depth Inc 15	rement 18 2	1 24	4 2	7	30
0.00-0.10	1			0.00										\models
0.10-0.20	3			-										
0.20-0.30 0.30-0.40	5 11			-										
0.40-0.50	17 23			- 0.50										
0.60-0.70	17													
0.70-0.80	26			-										
0.90-1.00	29			-										
				1.00 										\square
				-										-
				1.50										
														\vdash
				-										+
				-										$\left - \right $
				-										<u> </u>
				2.50										
				-										
				-										$\left - \right $
				3.00										
				-										
														\square
				-										\vdash
				3.50 										
				-										
				-										\square
				4.00										+
				-										
				- 										
				4.50										\square
				<u> </u>										$\left - \right $
				-										
				-										
Remarks Refusal at	 t 1.00m BGL			5.00						<u> </u>	S (a)	cale pprox)	Logg By	ed
											1	1:25	AE	3
											F	igure I	No.	
											1	2128-0)8-22.E)P05

Ground Investigations Ireland Ltd					Site Dunningstown Road									Probe Number DP06	
Machine : T Method : D	ecop 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm	Ground	Level (mOD)	Client Kilgallen & Partners									Job Number 12128-08-22	
		Location	Dates 04/2	10/2022	Engine	er								Shee 1/	t 1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	2	2	Blows	for De	epth Inc		t 24	24		20
0.00-0.10	2			0.00				5							+
0.10-0.20	3			-											
0.20-0.30 0.30-0.40	23			- 											
0.40-0.50 0.50-0.60	2 3			0.50											
0.60-0.70	2			-											+-
0.70-0.80 0.80-0.90	22			-											+
0.90-1.00 1.00-1.10	2 2			 1.00											_
1.10-1.20	4			-											
1.20-1.30 1.30-1.40	3 5														
1.40-1.50	8			 											+
1.60-1.70	27														+
1.70-1.80	30														30
				 2.00											
															+
				-											+
				— 2.50 —										<u> </u>	+
				- 											
				-											
				3.00 											+
				- 										<u> </u>	+
															_
				3.50											
				-											
				 -											+
				4.00										<u> </u>	+
															_
				4.50											
															\uparrow
				-											+
				5.00								<u> </u>		<u> </u>	<u> </u>
Remarks Refusal at	t 1.80m BGL											(Scale approx)	Logg By	ed
													1:25	AI	В
												F	Figure	No.	
													12128-0	J8-22.I	OP06

	Ground Investigations Ireland Ltd			Site							Prot Nun) Der		
		www.gii.ie	nolaria		Dunni	ingstowr	n Road	1						DP)7
Machine : 1 Method : [Гесор 10 Dynamic Probe	Cone Dimensions Diameter 43.7mm	Ground I	Level (mOD)) Client Kilgallen & Partners								Job Numt 12128-()8-22	
		Location	Dates 04/1	0/2022	Engine	er								Sheet 1/ ⁻	t 1
Depth (m)	Blows for Depth Increment	Field Records	Level (mOD)	Depth (m)	0	3 6	 }	Blows	for De	pth Inc	rement	21	24 2	27	30
0.00-0.10	2			0.00	Ť-	Ē		Ť		+					+
0.10-0.20	3			-											
0.20-0.30 0.30-0.40	4 6			- -											
0.40-0.50	8			 050											\vdash
0.60-0.70	12													<u> </u>	+
0.70-0.80	8														_
0.90-1.00	17			-											
1.00-1.10	14			1.00 						-					
1.20-1.30	25			- 											+
1.30-1.40	30			-											30
				1.50											
				-											
				-											+
				2.00											\vdash
				-											
				2.50											+
				-										<u> </u>	\vdash
				_											
				3.00 											\square
				- -											\vdash
															_
				3.50											
				-											
			-												+
				4.00										<u> </u>	+
				-											
				-											
				4.50											+
				-										<u> </u>	\vdash
				-											\perp
				- 											
Remarks Refusal a	t 1.40m BGL	<u> </u>		0.00		<u> </u>		1	1	<u> </u>	1	(Scale approx)	Logg By	ed
													1:25 Figure	AE No.	3
													12128-(08-22.C)P07

APPENDIX 5 – GPR Survey

13	14		15		16	
			SERVI	CES L	EGEND	
			GROUND ELECTRICITY	LINE	FMH FOUL DRAINAGE	
			RICAL M/HOLE		FOUL MANHOLE	
		OVERH	EAD ELECTRIC	-(NHOLE
		ESB HV UNDER	GROUND HV ELECTRICI	TY LINE	CMH CMH	
F		6m HIC	IH STREET LIGHT	-(COMBINED DRAINAGE	MANHOLE
		——————————————————————————————————————	LECTRIC TRAFFIC CON		PMH PMH PRODUCT DRAINAGE N	MANHOLE
			FIC CONTROL M/HOLE	CHE	CHEMICAL LINE	
			HAMBER	-(
		TP OVER	HEAD LINE WITH POLE		GULLY TRAP	
		COMM	S		- FIRE HYDRANT	
			S CHAMBER		WM WATER METER	
		VIRGIN VIRGIN			PRV PRV PRESSURE RELEASE V	VALVE
		FIBRE			[AVA]V AIR VALVE	
		-O FBO FIBRE	CHAMBER		NRV NON-RETURN VALVE	
			RA TELECOM		GSV GSV as GAS SV	
		CATV			GAS GAS LINE	
			CHAMBER	GL	GAS HP GAS HIGH PRESSUR	RE LINE
	-	BT/ESAT BT/ESAT	AT CHAMBER	CL I	0.00 COVER LEVEL (METRES - OS D	DATUM)
	-	SIRO SIRO	FIBRE	IL 10	.00 INVERT LEVEL (METRES - OS	DATUM)
			CHAMBER	DPI.5 DPIC	DEPTH TO TOP OF SERVICE	DUCT OR CABLE
			NTIFIED CHAMBER	DP C	N DRAINAGE = INVERT LEVEL OF PIP	Έ
	-	EARTH	LINE AND RODS	UTO	UNABLE TO OPEN	
		CCTV CCTV CCTV	IC SENSORS POLE	OSA UTT	OUTSIDE SURVEY AREA	
		UTILI1	IES CABNET	— o	L-B4 — QL-B4 DRAWN FROM SURVEY AREA SURVEYED AREA	RECORDS
	Pie Wh GP	ease note that the absence nile every method of underg PR and electro-magnetic loo	of services on this drawir ground utility locating has ator signal. Poor ground	ng is not solid proof t been adhered to in t conditions and or se	hat these services are not present in t his survey, some services may lie out rvices situated underneath other servi	he ground. side the range of the ices can also prove
	imp be ide	bossible to locate. Due to the held responsible for any se	he fact that not all Utility S ervices that have not beer duty of care when excav	Service Plans were p n identified. The cont rating.	rovided to Metroscan by the contractor ractor should not assume that all servi	r,Metroscan cannot ices have been
	Ple Dra	awing is intended solely for	provided is valid for 60 da use of the contractor nan	ned below.	below.	nong.
		curacy Levels deal conditions the accura	cy levels of the EML is +/-	5% whilst the GPR	putputs accuracy levels of 10% up to 2	2.5m depth.
	ble De Dia	ed on to other services). pths noted on drawings sha ameter of services will be g	build be taken as indicative ven where direct access	e and hand / vacuun	n excavation is advised where exact de visual inspection, eg manhole.	epth are required.
	All	Cover level elevations for rvey Limitations	Manholes / Inspection Ch	ambers will be taker	from topographical survey if supplied	
	The	ey can easily be traced wh gas mains can also prove	en placed in a conduit by difficult to identify.	the means of a sono	le or cobra reel.	IGER.
	lf M QL If m	Aetroscan cannot get an ac -B4'. nanholes cannot be opened	curate signal from a servi I on site, they with be ma	ice, it will be noted o rked on the drawing	n the drawing that the service is 'Take as UTO (unable to open).	n from records
	Doi	mestic services, Services a	bove ground, Disconnect	ted services where n	o signal can be obtained.	
		1. GP	R scanning freque	ncy 250 and 7	00 mhz	
		De 2. Ra	oth of investigation dio detection equip	n 2.5m, self cal oment:	ibrating.	
		Viv 3. GP	ax Metrotech VLoo R scanning limited	c Pro3 / RD700 I to smooth sur	0 faces only no obstruction.	
		4. All	depths stated are	on drawing an indication o	f depth	
		cau 5. All	tion required when Utilities are classif	n excavating. ied QL- B2 unl	ess noted otherwise.	
			F	PAS 12	28	
		Survey Type Desktop utility record	Level Hortizonal	vertical	Supporting Data	
		C Site Reconnaissance	QL-C Undefined	Undefined	A segmant of utility whose location is de reference to street furniture, topographica	emonstrated by visual I features or evidence of
			QL-B4 Undefined	Undefined	previous street work A utility segmant which is suspected to e detected and is therefor shown as a Horizontal location only of the utility de	ks. exist but has not been an assumed route
		B Detection	QL-B3P plus/minus 500mm QL-B2 plus/minus 250mm of the detected	depth) Plus/minus 40% of the	Horizontal and vertical location of the utility de	used cy detected by one of the
			QL-B2P depth plus/minus 150mm of the detected	detected depth plus/minus 15% of the	geophysical techniques	lity detected by multiple
		A Verification	QL-B1P depth QL-A plus/minus 50mm	plus/minus 15mm	Horizontal and vertical location of the top utility through trial holes/slit tro	p and/or bottom of the ench method
		Client :	Groun	d Invest	igations Ireland	d
		Site Addre	ess: D	Junning	stown Rd.	
				KIIKE	nny	
		Drawing T	itle: Gll Dunnii	nastown	Drwg No:	1
		Site Com	lation Det	0'	Shoot No:	
		9th Septen	1ber 2022	е.	Sheet NO.	1
		Scale:	Coor	dinates	Revision No:	
		1:100@A1	ITM			
		Addre	ess: Rathj Pierc Co. V Tel ((jarney estown Vexford (086) 8522 086) 1935	2298 847	
		Email Webs	: john ciara ite: www	@metros in@metro v.metrosc	can.ie oscan.ie an.ie	
13	14		15		16	__

APPENDIX 6 – Laboratory Testing

GENERAL 1. Datum for levels is OS Malin Head.

- 2. Verify existing levels prior to commencement of works. Report any discrepancies immediately to the Employer's Representative.
- 3. The locations shown for existing services are indicative only and may not be accurate. Furthermore, uncharted services may also be present. The Contractor should assume the existence of services unless proven otherwise.
- 4. It is the Contractor's responsibility to determine the existence and precise location of any service located within the site. All works shall be carried out in strict accordance with the document 'Code of Practice for Avoiding Danger from Underground Services' as published by the Health and Safety Authority.

Carriageway/Homezone

Kerb - 100mm high

Kerb - 6mm high

Footway

Site Boundary

centreline

Pavement 40mm thick, coloured chip HRA surf 70/100 with in accordance with IS EN 13108; on —100mm thick Asphalt Concrete Base AC32 dense base 70/100 in accordance with IS EN 13108; on 150mm thick layer of sub-base material in accordance with Clause 2.19 of the Specification

-pavement -capping layer

OS mapping reproduced under licence. This drawing is not to be reproduced without the written permission of Kilgallen and Partners. Copyright.

PL1 02/06/23 AC ISSUED FOR PLANNING REV DATE BY DETAILS STATUS

FOR PLANNING APPLICATION PURPOSES ONLY. NOT TO BE USED FOR ANY OTHER PURPOSE.

KILKENNY COUNTY COUNCIL

CLIENT

TITLE

PROJECT RESIDENTIAL DEVELOPMENT AT DUNNINGSTOWN ROAD, KILKENNY

ROADS AND STREETS - GENERAL LAYOUT, LONGITUDINAL SECTION AND DETAILS

KYLEKIPROE WELL ROAD PORTLAOISE T +353 56 866	2860	UNIT 3 DANVILLE BUSINESS PARK KILKENNY +353 56 777 01090						
DRN:	DRAWING NO.:		REV.:					
AC	22038-C-DR-101		PL1					
снкд:	SCALE:	SIZE:	DATE:					
РВ	1:250 @ A1	A1	02/06/23					

GENERAL
1. Datum for levels is OS Malin Head.

- 2. Verify existing levels prior to commencement of works. Report any discrepancies immediately to the Employer's Representative.
- The locations shown for existing services are indicative only and may not be accurate. Furthermore, uncharted services may also be present. The Contractor should assume the existence of services unless proven otherwise.

OS mapping reproduced under licence. This drawing is not to be reproduced without the written permission of Kilgallen and Partners. Copyright. PL1 02/06/23 AC ISSUED FOR PLANNING REV DATE BY DETAILS STATUS FOR PLANNING APPLICATION PURPOSES ONLY. NOT TO BE USED FOR ANY OTHER PURPOSE. CLIENT KILKENNY COUNTY COUNCIL PROJECT RESIDENTIAL DEVELOPMENT AT DUNNINGSTOWN ROAD, KILKENNY TITLE SWEPT PATH ANALYSIS KILGALLEN & PARTNERS CONSULTING ENGINEERS E-mail: Info@Kilgallen.ie, Web: www.kilgallen.ie KYLEKIPROE WELL ROAD PORTLAOISE T +353 56 866 2860 UNIT 3 DANVILLE BUSINESS PARK KILKENNY +353 56 777 01090 DRN: AC DRAWING NO.: 22038-C-DR-110 REV.: **PL1** SIZE: A1 DATE: 02/06/23 снкд: **РВ** SCALE:

1:100 @ A1

LEGEND

Surface water drain / sewer and chamber Gully and discharge pipe House drain - surface water -----Wastewater sewer and chamber House drain - wastewater with ------600mm dia. inspection chamber 100mm OD HDPE watermain Sluice valve in accordance with STD-W-15 On line hydrant in accordance with STD-W-19 On line air valve in accordance with STD-W-22 Boundary box in accordance 8 with STD-W-03 Scour Chamber in accordance with STD-W-30B Bulk Meter in accordance with STD-W-26A

GENERAL 1. Datum for levels is OS Malin Head.

- 2. Verify existing levels prior to commencement of works. Report any discrepancies immediately to the Employer's Representative.
- 3. The locations shown for existing services are indicative only and may not be accurate. Furthermore, uncharted services may also be present. The Contractor should assume the existence of services unless proven otherwise.
- 4. It is the Contractor's responsibility to determine the existence and precise location of any service located within the site. All works shall be carried out in strict accordance with the document 'Code of Practice for Avoiding Danger from Underground Services' as published by the Health and Safety Authority.

SURFACE WATER

- The Specification for surface water drainage works shall be Specification for Roadworks published by Transport Infrastructure Ireland.
- 2. All surface water drains and sewers to be constructed in accordance with Detail D1.
- Discharge pipes from gullies to drains and sewers shall be 150mm dia. Saddle connection for discharge pipes in accordance with Detail D3.
- Chambers to be 1200mm dia. PCC in accordance with the 'Code of Practice for Chamber and Gully Top Installations' published by Laois County Council.
- 5. Road gullies shall be in accordance with TII Detail CC-SCD-00510 and CC-SCD-00512.
- Separators to be installed in accordance with Detail D5 and manufacturer's recommendations.
- 7. Each house to be served by a separate drain of min.diameter 100mm dia. and laid to a minimum grade of 1 in 100.

WASTEWATER

- 1. Construction of wastewater infrastructure to comply with the Irish Water Code of Practice for Wastewater Infrastructure.
- Pipes for wastewater gravity sewers shall be uPVC pipes application area code "UD", stiffness class 8kN/m² in accordance with 3.13 of the Irish Water 'Wastewater Code of Practice'.
- 3. Wastewater drains and sewers to be constructed in accordance with STD-WW-07.
- 4. The minimum separation between wastewater pipes and other services shall not be less than either that shown in STD-WW-05 or that shown on M&E drawings.
- Each house to be served by a separate drain of min.diameter 100mm dia. and laid to a minimum grade of 1 in 60.
- 8. Chambers on wastewater drains and sewers in public areas shall be in accordance with STD-WW-10 .
- Private-side inspection chambers shall be in accordance with STD-WW-02, STD-WW-03 and STD-WW-13 and shall have a minimum depth to invert of 0.5m and a maximum depth to invert of 1.2m.
- 10. Maximum depth to invert for Access Junctions to be 0.6m.

WATER SUPPLY INFRASTRUCTURE

- 1. Construction of water supply infrastructure to comply with the Irish Water Code of Practice for Water Supply Infrastructure.
- 2. Pipes for watermains shall be HDPE PE-80 with an SDR-11 or SDR-17 rating in accordance with 3.9.2. of Irish water 'Code of Practice for Water Supply Infrastructure'.
- The minimum separation between watermains and other services shall not be less than either that shown in STD-W-11 or that shown on M&E drawings.
- Each house to be served by a separate service main.and Boundary Box in accordance with STD-W-03.

OS mapping reproduced under licence. This drawing is not to be reproduced without the written permission of Kilgallen and Partners. Copyright. PL1 02/06/23 AC ISSUED FOR PLANNING REV DATE BY DETAILS STATUS PRELIMINARY. NOT TO BE USED FOR ANY OTHER PURPOSE. KILKENNY COUNTY COUNCIL PROJECT RESIDENTIAL DEVELOPMENT AT DUNNINGSTOWN ROAD, KILKENNY DRAINAGE & WATER SUPPLY - GENERAL LAYOUT & LONGITUDINAL SECTIONS **KILGALLEN & PARTNERS** CONSULTING ENGINEERS E-mail: Info@Kilgallen.ie, Web: www.kilgallen.ie KYLEKIPROE WELL ROAD PORTLAOISE T +353 56 866 2860 UNIT 3 DANVILLE BUSINESS PARK KILKENNY +353 56 777 01090 DRN: AC DRAWING NO .: REV. 22038-C-DR-201 PL1 CHKD: **PB** SIZE: DATE: SCALE: 02/06/23 as shown @ A1 A1

GENERAL Datum for levels is OS Malin Head.

- Verify existing levels prior to commencement of works. Report any discrepancies immediately to the Employer's Representative.
- The locations shown for existing services are indicative only and may not be accurate. Furthermore, uncharted services may also be present. The Contractor should assume the existence of services unless proven otherwise.
- It is the Contractor's responsibility to determine the existence and precise location of any service located within the site. All works shall be carried out in strict accordance with the document 'Code of Practice for Avoiding Danger from Underground Services' as published by the Health and Safety Authority.

SURFACE WATER

- The Specification for surface water drainage works shall be Specification for Roadworks published by Transport Infrastructure Ireland.
- All surface water drains and sewers to be constructed in accordance with Detail D1.
- Discharge pipes from gullies to drains and sewers shall be 150mm dia. Saddle connection for discharge pipes in accordance with Detail D3.
- Chambers to be 1200mm dia. PCC in accordance with the 'Code of Practice for Chamber and Gully Top Installations' published by Laois County Council.
- Road gullies shall be in accordance with TII Detail CC-SCD-00510 and CC-SCD-00512.
- Separators to be installed in accordance with Detail D5 and manufacturer's recommendations.
- Each house to be served by a separate drain of min.diameter 100mm dia. and laid to a minimum grade of 1 in 100.

WASTEWATER

- Construction of wastewater infrastructure to comply with the Irish Water Code of Practice for Wastewater Infrastructure.
- Pipes for wastewater gravity sewers shall be uPVC pipes application area code "UD", stiffness class 8kN/m² in accordance with 3.13 of the Irish Water 'Wastewater Code of Practice'.
- Wastewater drains and sewers to be constructed in accordance with STD-WW-07.
- The minimum separation between wastewater pipes and other services shall not be less than either that shown in STD-WW-05 or that shown on M&E drawings. Each house to be served by a separate drain of
- min.diameter 100mm dia. and laid to a minimum grade of 1 in 60.
- Chambers on wastewater drains and sewers in public areas shall be in accordance with STD-WW-10.
- Private-side inspection chambers shall be in accordance with STD-WW-02, STD-WW-03 and STD-WW-13 and shall have a minimum depth to invert of 0.5m and a maximum depth to invert of 1.2m.

10. Maximum depth to invert for Access Junctions to be 0.6m.

WATER SUPPLY INFRASTRUCTURE

- Construction of water supply infrastructure to comply with the Irish Water Code of Practice for Water Supply Infrastructure.
- Pipes for watermains shall be HDPE PE-80 with an SDR-11 or SDR-17 rating in accordance with 3.9.2. of Irish water 'Code of Practice for Water Supply Infrastructure'.
- The minimum separation between watermains and other services shall not be less than either that shown in STD-W-11 or that shown on M&E drawings.
- Each house to be served by a separate service main.and Boundary Box in accordance with STD-W-03.

A1

As shown @ A1

02/06/23

PB