Barrett Mahony Consulting Engineers Civil . Structural . Project Management	DOCUMENT	PAGE 1
Offices: Dublin, London	LEAD	OF
Sandwith House, 52 – 54 Lower Sandwith Street, Dublin 2, Ireland.		20
Tel: (01) 677 3200 Fax: (01) 677 3164 Email: bmce@bmce.ie Web: www.bmce.ie	SHEET	

PROJECT:	CASTLECOMER HOUSING SCHEME
PROJECT NO.	16.134

DOCUMENT TITLE: CIVIL ENGINEERING INFRASTRUCTURE REPORT FOR PLANNING

DOCUMENT NO: 16.134-IR-01

Issue	Date	Description	Orig.	PE	PD	lssue Check
P1	20.07.17	Issued for Planning	тс	POD	BM	

CIVIL ENGINEERING INFRASTRUCTURE REPORT FOR PLANNING

CONTENTS:

1.0 **INTRODUCTION**

- General Description 1.1
- 1.2 Scope of this Report

SURFACE WATER DRAINAGE SYSTEM 2.0

- 2.1 2.2 Existing Surface Water Infrastructure
- Proposed Surface Water Drainage System
- 2.3 Compliance with the Principles of Sustainable Urban Drainage Systems Interception Storage 2.3.1

FOUL DRAINAGE SYSTEM 3.0

- Existing Foul Sewer Infrastructure 3.1
- Proposed Foul Sewer System 3.2
- Foul Design 3.3

WATER SUPPLY 4.0

- 4.1 Existing Water Supply Infrastructure
- 4.2 Proposed Water Supply System

Appendix I

Soakaway Design for 100 Year Storm

Appendix II Extract from IGSL Limited Geotechnical Report

1.0 INTRODUCTION

1.1 General Description

The proposed development is a new residential estate consisting of 28no. dwellings, with associated roads, footpaths and car parking, located at Donaguile, Castlecomer, Co. Kilkenny. The total site area is 1.14ha.

Currently the site is a brownfield occupied by 2no. dwellings. These are to be demolished prior to the commencement of the new developments construction.

1.2 Scope of this Report

This report describes the proposed civil engineering infrastructure for the development and how it connects to the public infrastructure serving the area. In particular, foul, surface water drainage and water supply aspects are considered. This report should be read in conjunction with the BMCE drawings submitted with the Planning Application.

2.0 SURFACE WATER DRAINAGE SYSTEM

2.1 Existing Surface Water Infrastructure

Currently the site is a brownfield site with no existing surface water drainage network. Runoff generated on site due to rainfall discharges directly to the soil via infiltration. There is an existing 150mm combined sewer located on Barrack Street to the south of the site.

2.2 Proposed Surface Water Drainage System

The proposed development will maintain all surface water generated on site. No additional flow will be discharged to the existing sewer in the area. Rainfall falling on hardstanding surfaces will be collected in a new gravity network located beneath the new access road from which it will discharge to the soil via soakaway devices.

Due to the topography of the site and the variation of soil permeability across the site two separate surface water drainage networks and soakaways are required. These will be located to the west and east of the site.

All car parking spaces will be finished in permeable paving designed to allow full infiltration of surface water in these areas.

2.3 <u>Compliance with the Principles of Sustainable Urban Drainage Systems</u>

In order to both reduce and attenuate the flow, the proposed development will be designed in accordance with the principles of Sustainable Urban Drainage Systems (SUDS) as embodied in the recommendations of the Greater Dublin Strategic Drainage Study (GDSDS). The GDSDS addresses the issue of sustainability by requiring designs to comply with a set of drainage criteria which aim to minimize the impact of urbanization by replicating the run-off characteristics of the greenfield site. The criteria provide a consistent approach to addressing both rate and volume of run-off as well as ensuring the environment is protected from pollution that is washed off roads and buildings.

The requirements of SUDS are typically addressed by provision of the following:

- Interception storage
- Treatment storage (not required if interception storage is provided)
- Attenuation storage
- Long term storage (not required if growth factors are not applied to Qbar when designing attenuation storage)

In the case of the subject site interception and attenuation storage will be provided in the form of two soakaway devices as mentioned above in Section 2.2. Growth factors will not be applied to the allowable discharge for the 100 year event. This means that both treatment storage and long term storage (neither of which would be practical on this site) are not required. Section 2.3.1 that follow describe how interception and attenuation storage have been provided for the subject site.

2.3.1 Interception Storage

According to the CIRIA SuDS Manual C753 interception storage where provided should ensure that the first 5-10mm of rainfall is intercepted on site and does not find its way to the site drainage system. The overall site area of the site 1.14ha.

<u>Required Interception Storage</u> = $0.01 \times 1.14 \times 10^4 = 57 \text{m}^3$

In the context of the subject site interception storage will be provided in the form of two soakaways. The first soakaway will be located under the grassed area to the west of the site and will serve 9no. dwellings with the associated footpaths and road. The soil infiltration rate in this area of the site is 0.0017m/minute, as calculated by IGSL Limited in their Geotechnical Report (refer to extract in Appendix II). A soakaway with a maximum volume of $54m^3$ has been designed for the 100 year storm to provide adequate storage for this portion of the site.

A second soakaway will be located under the green area to the east of the site near the entrance and will cater for 19no. dwellings and associated footpaths and road. The infiltration rate in this area is 0.00048m/minute (refer Appendix II). This soakaway will provide 189m³ of storage and has been designed for a 100 return period.

<u>Provided Interception storage</u> = $54m^3 + 189m^3 = 243m^3$

Adequate interception storage is provided in the form of 2no. soakaways to meet the criteria set in the Ciria SuDS Manuel C753.

3.0 FOUL DRAINAGE SYSTEM

3.1 Existing Foul Sewer Infrastructure

The existing site is served by 150mm combined sewer located under Barrack Street to the south of the site.

3.2 **Proposed Foul Sewer System**

The proposed development will be served by a new foul sewer to be laid beneath the new access road. This site will discharge to the existing combined sewer on Barrack Street.

Dwelling Quantity **Total Occupancy** 3 Bed/4 Person House 8 32 2 Bed/ 4 person House 5 20 3 Bed/ 6 Person House 4 24 4 Bed/ 7 Person House 2 14 1 Bed/ 2 person Apartment 8 16 2 Bed/ 3 Person Apartment 6 18 33 124 Total

The Occupancy of the site is:

Foul Effluent:

Waste Water Load		= 225 l/person/day
Daily water Demand =	225 l/person/day x 124 ppl	= 27,900 l/day
Peak Flow =	<u>27,900 l/day x 6</u> 24 x 60 x 60	= 1.94 l/s
	= · · · · · · · · · · · · · · · · · · ·	

Foul Sewer Network Pipe Sizes

The foul sewer which runs along Barrack Street is a 300 mm diameter foul pipe at 1:150 minimum fall. This pipe will have a capacity = 11.48/s, which is sufficient for the foul flow from the site.

4.0 WATER SUPPLY

4.1 Existing Water Supply Infrastructure

The site is currently served by an existing 100mm asbestos watermain located on Barrack Street.

4.2 **Proposed Water Supply System**

The proposed site will be served by a new 100mm HDPE watermain which will connect into the existing watermain on Barrack Street.

The water demand for the development is 27,900 l/day. Fire hydrants will be provided on the new line at a maximum distance of 46 meters from any dwelling in accordance with the 'Recommendations for Site Development Works for Housing Areas'. 24 hours storage will be provided within each house.

APPENDIX I Soakaway Design for 100 Year Storm

12 Mill Street16.134LondonCastlecomer Housing ScSE1 2AYWestern TankDate 19/07/2017Designed by TCFile Soakaway Design.srcxChecked by PODXP SolutionsSource Control 2016.1.Summary of Results for 100 year Return Peri	heme 1 od (+10%) c Status me	Micro Drainage
SE1 2AYCastlecomer Housing ScDate 19/07/2017Designed by TCFile Soakaway Design.srcxChecked by PODXP SolutionsSource Control 2016.1.Summary of Results for 100 year Return Period	1 od (+10%) c Status me	Micro Drainage
Date 19/07/2017 File Soakaway Design.srcx XP Solutions Summary of Results for 100 year Return Peri	1 od (+10%) < Status me	- Drainage
File Soakaway Design.srcxChecked by PODXP SolutionsSource Control 2016.1.Summary of Results for 100 year Return Peri	1 od (+10%) < Status me)	
<u>Summary of Results for 100 year Return Peri</u>	1 od (+10%) Status)	
<u>Summary of Results for 100 year Return Peri</u>	od (+10%) « Status me)	
	< Status me)	
Half Drain Time : 408 minutes.	< Status me)	
Storm Max Max Max Ma	me)	
Event Level Depth Infiltration Volu (m) (m) (l/s) (m ³		
15 min Summer 159.455 0.455 0.9 20 30 min Summer 159.610 0.610 1.0 27 60 min Summer 159.755 0.755 1.0 34 120 min Summer 159.946 0.887 1.1 35 180 min Summer 159.946 0.946 1.1 44 240 min Summer 159.975 0.975 1.1 44 360 min Summer 159.991 0.991 1.1 44 480 min Summer 159.991 0.991 1.1 44 600 min Summer 159.991 0.991 1.1 44 400 min Summer 159.975 0.975 1.1 43 960 min Summer 159.950 0.950 1.1 44 2160 min Summer 159.894 0.894 1.1 40 2160 min Summer 159.72 0.725	.5 0 K K .5 0 K K .9 0 K K .6 0 K K .6 0 K K .7 0 K K .4 0 K K K K K K K K K K K K K K K K K K K	
Storm Rain Flooded Time-Pe	ak	
15 min Summer 83.260 0.0 30 min Summer 56.717 0.0 60 min Summer 36.261 0.0 120 min Summer 36.261 0.0 120 min Summer 22.587 0.0 1 180 min Summer 13.846 0.0 2 360 min Summer 13.846 0.0 3 480 min Summer 13.846 0.0 3 600 min Summer 8.414 0.0 3 600 min Summer 7.159 0.0 4 720 min Summer 6.272 0.0 5 960 min Summer 3.789 0.0 9 2160 min Summer 1.697 0.0 25 5760 min Summer 1.697 0.0 32 7200 min Summer 1.018 0.0 46 10080 min Summer 1.018 0.0 53	19 33 52 22 32 40 52 24 40 52 24 40 32 24 40 32 28 32 58 58 52 18 33 52 20 52 18 33 52 20 72 52 18 33 52 20 72 52 18 33 52 20 72 52 18 33 52 20 72 72 72 72 72 72 72 72 72 72 72 72 72	

Barrett Mahony Consulting Eng					Page 2
12 Mill Street	16.134				
London	Castlec	omer Hous	sing Scher	ne	1 m
Date 19/07/2017	Designe	d by TC			Micro
File Soakaway Design Srcx	Checked	by POD			Drainage
XP Solutions					
	_				
<u>Summary of Results f</u>	for <u>100</u> y	<u>/ear Retu</u>	<u>rn Period</u>	(+10%)	
Storm Max	k Max	Мах	Мах	Status	
Event Leve	el Depth	Infiltrat	ion Volume		
(m)) (m)	(1/5)	(m ²)		
720 min Winter 160.1	127 1.127		1.2 50.7	0 К	
1440 min Winter 159.9	998 0.998		1.1 44.9	0 K 0 K	
2160 min Winter 159.8	860 0.860		$1.1 38.7 \\ 1 0 32 0$		
4320 min Winter 159.5	510 0.510		0.9 22.9	0 K	
5760 min Winter 159. 7200 min Winter 159 2	335 0.335		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 K 0 K	
8640 min Winter 159.1	101 0.101		0.8 4.6	ОК	
10080 min Winter 159.0	050 0.050		0.7 2.3	ОК	
	•	-1			
Storm Event	Rain (mm/hr	Flooded) Volume	Time-Peak (mins)		
	C ,	(m ³)	(
720 min Wint	er 6.27	2 0.0	548		
960 min Wint	er 5.08	9 0.0	702		
2160 min Wint	er 2.82	0.0	1008		
2880 min Wint	er 2.28	5 0.0	1848		
5760 min Wint	er 1.37	3 0.0	3400		
7200 min Wint	er 1.16	4 0.0	4104		
10080 min Wint	er 0.90	8 0.0	5136		
©1982	-2016 XP	Solutior	าร		

Barrett Mahony Consulting Eng					
12 Mill Street	16.134				
London	Castlecomer Housing Scheme				
SE1 2AY	Western Tank	Micro			
Date 19/07/2017	Designed by TC	Drainage			
File Soakaway Design.srcx	Checked by POD	brainage			
XP Solutions	Source Control 2016.1.1				
	Rainfall Details				
	<u>Kannan betaris</u>				
Rainfall Model	FSR Winter Storms	Yes			
Return Period (years) Region	Scotland and Treland CV (Summer)	0.750			
M5-60 (mm)	16.800 Shortest Storm (mins)	15			
Ratio R Summer Storms	0.300 Longest Storm (mins) Yes Climate Change %	10080 + 10			
		120			
	<u>Time Area Diagram</u>				
	Total Area (ha) 0.136				
	Time (mins) Area From: To: (ha)				
	0 4 0.136				
6	1982-2016 XP Solutions				

Barrott Mahony Cons	ultina E	na								Page /
12 Mill Street	uiting E	16	5.134	L						Page 4
London Castlecomer Housing Scheme							4			
SE1 2AY Western Tank							Mirro			
Date 19/07/2017 Designed by TC							Drainage			
File Soakaway Desig	n.srcx	Ch	lecke	d by	POD	2016	1 1			
		30	Juice	Cont	101	2010				
		Mod	el D	etail	<u>s</u>					
	Storage	is Online	e Cov	er Lev	el ((m) 16	1.000			
	<u>Ce</u>	llular s	Stora	age St	ruc	<u>ture</u>				
	Infiltrat Infiltrat	ion Coeff ion Coeff	Inv icien icien	vert Le it Base it Side Safety F	evel e (m, e (m, v Fac Poros	(m) 1 /hr) C /hr) C ctor sity	.59.00).1020).1020 2. 0.9	00 00 00 00		
Depth (m) Area	a (m²) In	f. Area ((m²)	Depth	(m)	Area	(m²)	Inf.	Area	(m²)
0.000	50.0	5	50.0	1.	100		50.0			83.0
0.100	50.0	5	56.0	1. 1.	300		0.0			86.0
0.300	50.0 50.0	5	59.0	1.	400		0.0			86.0 86.0
0.500	50.0	6	65.0	1.	600		0.0			86.0
0.600	50.0 50.0	6	58.0 71.0	1.	700		0.0			86.0 86.0
0.800	50.0	7	74.0	1.	900		0.0			86.0
0.900	50.0	7	77.0	2.	000		0.0			86.0
1.000	50.0	U U								

©1982-2016 XP Solutions

Barrett Mahony Consulting Eng)					Page 1
12 Mill Street	1	6.134				
London	Ca	astleco	mer Hous	sing Sche	me	1 m
SEL 2AY	Ea	astern	lank			Micro
File Soakaway Design srcy		es i grieu hockod				Drainage
XP Solutions	S	ource C	ontrol 2	2016.1.1		
<u>Summary of Result</u>	<u>s for</u>	<u>100 ye</u>	<u>ar Retu</u>	<u>rn Period</u>	(+10%)	
наlf	Drain	Time : 1	627 minut	tes.		
Storm Event l	Max ∟evel	Max Depth I	Max nfiltrat	Max ion Volume	Status	
	(m)	(m)	(1/s)	(m³)		
15 min Summer 15	53.963	0.313	(0.8 49.3	οк	
30 min Summer 15	54.074	0.424	(
120 min Summer 1	54.305	0.655	(0.9 103.2	0 K 0 K	
180 min Summer 15 240 min Summer 15	54.376	0.726		0.9 114.3 0 9 122 2	0 K	
360 min Summer 1	54.493	0.843	ĺ	0.9 132.8	ОК	
480 min Summer 15 600 min Summer 15	54.536	$0.886 \\ 0.916$	(0.9 139.6 0.9 144.2	ОК	
720 min Summer 1	54.586	0.936	(0.9 147.3	ΟK	
1440 min Summer 1	54.607	0.957	(0.9 150.8 0.9 151.7	0 K 0 K	
2160 min Summer 1	54.603	0.953	(0.9 150.1	0 K	
4320 min Summer 1	54.584	0.954	($0.9 147.1 \\ 0.9 140.2$	0 K 0 K	
5760 min Summer 15	54.493	0.843	(0.9 132.8		
8640 min Summer 1	54.396	0.746	ĺ	0.9 125.2 0.9 117.6	0 K	
10080 min Summer 15 15 min Winter 15	54.349	0.699		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 K	
30 min Winter 1	54.126	0.476	ĺ	0.8 74.9	ОК	
60 min Winter 1 120 min Winter 1	54.252	0.602	(0.9 94.9 0.9 116.2	ОК	
180 min Winter 1	54.469	0.819	(O K	
360 min Winter 1	54.527	0.877	(0.9 138.1 0.9 150.6	0 K 0 K	
480 min Winter 15 600 min Winter 15	54.659	1.009 1.046		$1.0 \ 158.9$	0 K	
	54.050	1.040		1.0 104.0	υĸ	
Storm		Rain	Flooded	Time-Peak		
Event		(mm/nr)	(m ³)			
15 min S	Summer	83.260	0.0	19		
30 min S 60 min S	Summer Summer	56.717 36.261	0.0	34 64		
120 min S	Summer	22.587	0.0	124		
180 min S 240 min S	Summer	16.980	0.0	184 242		
360 min s	Summer	10.354	0.0	362		
480 min S 600 min S	Summer Summer	8.414 7.159	0.0	482 602		
720 min s	Summer	6.272	0.0	722		
1440 min S	Summer	3.789	0.0	960 1284		
2160 min S	Summer	2.820	0.0	1664		
4320 min S	Summer	1.697	0.0	2896		
5760 min s 7200 min s	Summer Summer	1.373 1.164	$0.0 \\ 0.0$	3696 4544		
8640 min S	Summer	1.018	0.0	5360		
15 min w	/inter	83.260	0.0	19		
30 min W	linter	56.717	0.0	33		
120 min w	linter	22.587	0.0	122		
180 min W 240 min W	linter linter	16.980	0.0	180 240		
360 min w	linter	10.354	0.0	356		
480 min W 600 min w	linter linter	8.414 7.159	0.0	474 590		
019	982-20) <u>16 xp</u> s	<u>Solu</u> tion	IS		

Barrett Mahony Consulting Eng	Page 2						
12 Mill Street	1	6.134					
London		astlec	omer Hou	ISING	schen	ne	m m
SEL ZAY Eastern Tank							Micro
File Soakaway Design Srcx	Drainage						
XP Solutions							
	~						
<u>Summary of Results</u>							
Storm M	lax	Мах	Мах		Мах	Status	
Event Le	vel m)	Depth	Infiltrat	tion	Volume		
			(1/3)				
720 min Winter 154 960 min Winter 154	.723	1.073 1 106		$1.0 \\ 1 0$	168.9 174 2	0 K	
1440 min Winter 154	.777	1.127		1.0	177.5	ΟK	
2160 min Winter 154 2880 min Winter 154	.760	$1.110 \\ 1.085$		$1.0 \\ 1.0$	174.8	ОК	
4320 min Winter 154	.668	1.018		1.0	160.3	ОК	
7200 min Winter 154	.515	0.865		0.9	136.2	0 K 0 K	
8640 min Winter 154 10080 min Winter 154	.439	0.789 0.715		0.9	124.2	0 K 0 K	
		01715		015	11210	U IX	
Storm		Rain	Flooded	Time	e-Peak		
Event		(mm/hr)) Volume (m³)	(m	ins)		
720 min wit	ntor	6 27	2 0 0		704		
960 min Wir	nter	5.089	9 0.0		932		
1440 min Wir 2160 min Wir	nter	3.789	9 0.0		1370 1752		
2880 min Wir	nter	2.28	5 0.0		2192		
4320 min wir 5760 min Wir	nter	1.69	7 0.0 3 0.0		4032		
7200 min Wir 8640 min Wir	nter	1.164	4 0.0 8 0.0		4904 5784		
10080 min Wir	nter	0.908	8 0.0		6560		
	<u></u>	010	<u></u>				
©1982-2016 XP Solutions							

Barrett Mahony Consulting	Eng	Page 3
12 Mill Street	16.134	
London	Castlecomer Housing Scheme	
SE1 2AY	Eastern Tank	Mirro
Date 19/07/2017	Designed by TC	Drainane
File Soakaway Design.srcx	Checked by POD	Diamage
XP Solutions	Source Control 2016.1.1	
	Rainfall Details	
	<u>Karman becarris</u>	
Rainfall Model	FSR Winter Storms	Yes
Return Period (years) Region	Scotland and Ireland CV (Summer)	0.750
M5-60 (mm)	16.800 Shortest Storm (mins)	15
Ratio R Summer Storms	U.300 Longest Storm (mins) Yes Climate Change %	+10
	· · ·	•
	<u>Time Area Diagram</u>	
	Total Area (ha) 0.320	
	Time (mins) Area From: To: (ha)	
	0 4 0.320	
	©1982-2016 XP_Solutions	

Barrett Mahony Consulting Eng						
12 Mill Street						
London	Castlecomer Housing Scheme	L'				
SE1 2AY	Eastern Tank	Micro				
Date 19/07/2017	Designed by TC					
File Soakaway Design.srcx	Checked by POD	Diamaye				
XP Solutions	Source Control 2016.1.1					
M Storage is Onl <u>Cellula</u> Infiltration Co Infiltration Co	<u>Nodel Details</u> ine Cover Level (m) 155.350 <u>r Storage Structure</u> Invert Level (m) 153.650 efficient Base (m/hr) 0.02880 efficient Side (m/hr) 0.02880					
	Safety Factor 2.0 Porosity 0.90					
Depth (m) Area (m ²) Inf. Are	a (m²) Depth (m) Area (m²) Inf. Area	(m²)				
$\begin{array}{c} 0.000 & 175.0 \\ 0.100 & 175.0 \\ 0.200 & 175.0 \\ 0.300 & 175.0 \\ 0.400 & 175.0 \\ 0.500 & 175.0 \\ 0.600 & 175.0 \\ 0.600 & 175.0 \\ 0.700 & 175.0 \\ 0.800 & 175.0 \end{array}$	175.0 0.900 175.0 181.4 1.000 175.0 187.8 1.100 175.0 194.3 1.200 175.0 200.6 1.300 0.0 207.0 1.400 0.0 213.4 1.500 0.0 219.8 1.600 0.0 226.2 1.700 0.0	232.6 239.0 245.4 251.8 251.8 251.8 251.8 251.8 251.8 251.8 251.8				

APPENDIX II Extract from IGSL Limited Geotechnical Report

e. Percolation

The percolation characteristics of the sub soil was determined at two locations in accordance with the requirements of BRE Digest 365. Results are presented in Appendix V.

Trial holes were excavated to a depth of 2.00 metres, the stratification consisting of top/soil and fill overlying clayey gravelly SAND.

The trial excavations were initially soaked and then filled with water and the dissipation of this water over time was recorded. Tests were then repeated and the infiltration rate was calculated based on the second cycle of tests.

The infiltration rates calculated for both tests are as follows:

Test No. SA01	Infiltration Rate	0.0017 metres/minute
Test No. SA02	Infiltration Rate	0.00048 metres/minute

III Testing

(a) In-Situ :

Standard penetration tests were carried out at approximate 1.00 metre intervals in the geotechnical boreholes to measure relative in-situ soil strength. N values are noted in the right hand column of the boring records, representing the blow count required to drive the standard sampler 300mm into the soil, following initial seating blows.

The results are summarised as follows:

Stratum	Range of N values	Comment
Sandy GRAVEL (Gravelly SAND)	11 to 29	Medium Dense to Dense
Gravelly CLAY	28 to 51	Stiff to Hard

Tests carried out during the course of rotary drilling also confirm the very stiff to hard consistency of the gravelly clay.

